

8.1 Partial and Scaling Distortion Embeddings

Recall the following definitions we have discussed in the first lecture.

Definition 8.1. Given an embedding \(f : X \to Y, \forall x \neq y \in X, \) \(\text{dist}_f(x,y) = \max \left\{ \frac{d_y(f(x),f(y))}{d_x(x,y)}, \frac{d_x(x,y)}{d_y(f(x),f(y))} \right\}. \)

Definition 8.2 (Partial Embedding). Let \((X,d_x)\) and \((Y,d_y)\) be any metric spaces, and \(G \subseteq \binom{X}{2} \). We say that \((f,G) \) is partial embedding with distortion \(\alpha \geq 1 \), if \(\forall (x,y) \in G \) it holds that \(\text{dist}_f(x,y) \leq \alpha. \) Partial embedding \((f,G) \) is called \((1-\epsilon)\)-partial, if \(|G| \geq (1-\epsilon)^{(\binom{X}{2})}. \)

Definition 8.3 (Scaling Distortion). Let \(\alpha : [0,1] \to \mathbb{R}^+ \) be a non-increasing function. We say that embedding \(f : X \to Y \) has an \(\alpha \)-scaling distortion if for all \(0 \leq \epsilon \leq 1 \) there exists a set \(G_\epsilon \subseteq \binom{X}{2} \) such that \((f,G_\epsilon) \) is a \((1-\epsilon)\)-partial embedding with distortion \(\alpha(\epsilon). \)

Note that for \(\epsilon < \left(\frac{n}{2} \right)^{-1} \) the above definition captures the notion of the worst case distortion of a non-contractive (or non-expansive) embedding \(f. \)

Scaling with Average Distortion. We discuss the strong relationship between scaling and \(\ell_q \) distortions. Recall the definition of the \(\ell_q \)-distortion: \(\ell_q \text{-dist}(f) = \left(\sum_{x \neq y \in X} (\text{dist}_f(x,y))^q \right)^{\frac{1}{q}}, \forall q \geq 1. \)

Claim 8.1 (Exercise). If an embedding \(f \) has an \(\alpha \)-scaling distortion, then \(\forall 1 \leq q < \infty: \)

1. \(\ell_q \text{-dist}(f) \leq \left(\frac{n}{2} \right)^{-\frac{1}{2}} \left(\sum_{i=1}^{\binom{n}{2}} \alpha \left(\frac{1}{2^q} \right) \right)^{\frac{1}{q}} + \alpha \left(\frac{1}{2^q} \right)^{\frac{1}{q}}. \)

2. \(\ell_q \text{-dist}(f) \leq \left(2 \int_{\frac{1}{2^q}}^{\frac{1}{2}} (\alpha(x))^q dx \right)^{\frac{1}{q}}. \)

For another direction we make the following observation.

Claim 8.2. Let \(1 \leq q < \infty, \alpha \geq 1, \) and \(f \) be an embedding. If \(\ell_q \text{-dist}(f) \leq \alpha, \) then for \(\epsilon = \frac{1}{2q}, \) \(f \) is an \((1-\epsilon)\)-partial embedding with distortion at most \(2\alpha. \)

Proof. We have to show that there exists a set \(G \subseteq \binom{X}{2}, \) such that \(|G| \geq (1-\epsilon)^{(\binom{n}{2})}, \) and the distortion of \(f \) on that set is at most \(2\alpha. \) Namely, we have to show that there are at most \(\epsilon^{\binom{S}{2}} \) pairs that can be distorted by more than \(2\alpha. \) Assume by contradiction there is \(S \subseteq \binom{X}{2} \), \(|S| > \epsilon^{\binom{n}{2}} \) and every pair from \(S \) distorted by more than \(2\alpha. \) Therefore, \((\ell_q \text{-dist}(f))^q > \frac{\epsilon^{\binom{S}{2}}}{\epsilon^{\binom{n}{2}}} = \alpha^q, \) a contradiction. \(\square \)

The above claim means that for all \(\gamma > 1, f \) is \((1-1/\gamma^q)\)-partial embedding, with distortion \(\gamma \alpha. \) In other words, for any \(0 < \epsilon < 1 (\epsilon = 1/\gamma^q), f \) is \((1-\epsilon)\)-partial embedding with distortion \(\alpha/\epsilon^{\frac{1}{q}}. \) Namely, \(f \) has \(\ell_q \text{-dist}(f)/\epsilon^{\frac{1}{q}}\)-scaling distortion.

8.1.1 Embedding into Trees with Scaling Distortion

Now we are ready to state the main result of this section.

Theorem 8.3 ([1], [2]). The following holds.

1. ([1]) Any finite metric space is embeddable into ultra-metric, with scaling distortion \(O\left(\frac{1}{\sqrt[3]{\epsilon}}\right) \).

2. ([1]) Any weighted graph contains a spanning tree, with scaling distortion \(O\left(\frac{1}{\sqrt[3]{\rho}}\right) \).

3. ([2]) For any \(0 < \rho < 1 \), any weighted graph \(G \) contains a spanning tree, with scaling distortion \(\tilde{O}\left(\sqrt{1/\epsilon/\rho}\right) \), and weight bounded by \((1 + \rho)\text{MST}(G)\). This result is tight with respect to \(\rho \).

For the first two items we conclude: for \(1 \leq q < 2 \), \(\ell_q\text{-dist}(f) = O(1) \); \(\ell_2\text{-dist}(f) = O(\sqrt{\log n}) \); for \(q > 2 \), \(\ell_q\text{-dist}(f) = O(n^{1-2/q}) \).

Proof of Theorem 8.3(1). Let \((X, d)\) be an \(n\)-point metric space. We construct the embedding by induction on \(n \). The idea is to partition (in a smart way) \(X \) by combining the trees obtained by inductive steps on \(X_1 \) and \(X_2 \). Let \(f_1 : X_1 \rightarrow U_1 \) and \(f_2 : X_2 \rightarrow U_2 \) be embeddings obtained by induction. The ultra-metric tree for \(X \) is be obtained by composing \(U_1 \) and \(U_2 \), on the new root \(r \), with label \(\Delta(r) = \text{diam}(X) = \Delta \). Thus, we have to show how to decompose \(X \). Next we discuss what properties should such decomposition satisfy.

We have to show that there exists \(c > 0 \), such that for any \(0 < \epsilon < 1 \) there is \(G_\epsilon \subseteq \left(\frac{2}{3}\right) \) with \(|G_\epsilon| \geq (1 - \epsilon)^{|X|/2} \), such that \(\forall x, y \in G_\epsilon, \text{dist}_f(x, y) \leq \frac{1}{c\sqrt[3]{\epsilon}} \). In other words, we have to show that there are at most \(\epsilon(|X|/2) \) pairs of points of \(X \) with distortion larger than \(\frac{1}{c\sqrt[3]{\epsilon}} \).

By the induction’s assumption, there are at most \(\epsilon(|X_1|/2) \) pairs of \(X_1 \), and at most \(\epsilon(|X_2|/2) \) pairs of \(X_2 \) with distortion larger than \(\frac{1}{c\sqrt[3]{\epsilon}} \). Note that if \(x \in X_1 \) and \(y \in X_2 \) such that \(d(x, y) \geq c\sqrt[3]{\epsilon}\Delta \), then \(\text{dist}_f(x, y) \leq \frac{1}{c\sqrt[3]{\epsilon}} \). Consider the set \(B_\epsilon = \{(x, y) | x \in X_1, y \in X_2, d(x, y) < c\sqrt[3]{\epsilon}\Delta\} \). Thus, we want to partition \(X \) in such a way, that for every \(\epsilon \), the number of pairs with large distortion is bounded by:

\[
\epsilon\left\lfloor \frac{|X_1|}{2} \right\rfloor + \epsilon\left\lfloor \frac{|X_2|}{2} \right\rfloor + |B_\epsilon| \leq \epsilon\left\lfloor \frac{|X|}{2} \right\rfloor \iff |B_\epsilon| \leq \epsilon|X_1| \cdot |X_2|.
\]

Thus, we show how to partition \(X \) such that above inequality holds for every \(\epsilon \).

Let \(u \in X \) be a point such that \(|\bar{B}(u, \frac{\Delta}{2})| \leq \frac{n}{2} \). Note that there is such \(x \), since if \(x, y \in X \) such that \(\Delta = d(x, y) \), then open balls of radius \(\frac{\Delta}{2} \) around \(x \) and \(y \) are disjoint and at least one of them contains at most \(\frac{n}{2} \) points. Let \(r > 0 \) be a radius (we will choose the value of \(r \) later), and let \(X_1(r) = \bar{B}(u, r) \) and \(X_2(r) = X \setminus X_1 \) (note that \(X_1 \) and \(X_2 \) are dependent on \(r \)). Define the following subsets of \(X \):

\[
S_1^{(r, \epsilon)} = \{w \in X_1(r) | d(w, u) > r - c\sqrt[3]{\epsilon}\Delta\}, \quad S_2^{(r, \epsilon)} = \{w \in X_2(r) | d(w, u) < r + c\sqrt[3]{\epsilon}\Delta\}.
\]

Note that \(B_\epsilon \subseteq S_1^{(r, \epsilon)} \times S_2^{(r, \epsilon)} \), implying \(|B_\epsilon| \leq |S_1^{(r, \epsilon)}| \cdot |S_2^{(r, \epsilon)}| \). Thus, we will prove that there exists \(r \), such that for all \(0 < \epsilon < 1 \), \(|S_1^{(r, \epsilon)}| \cdot |S_2^{(r, \epsilon)}| \leq \epsilon|X_1(r)| \cdot |X_2(r)| \).

Let \(\bar{\epsilon} = \max\{\epsilon | |B(u, \frac{\sqrt[3]{\epsilon}\Delta}{4})| \geq en\} \). Note that this set is not empty, as at least \(\epsilon = \frac{1}{n} \) belongs to it. Also note that \(\bar{\epsilon} \leq 1/2 \). Thus, for any \(\epsilon > \bar{\epsilon} \), \(B\left(u, \frac{\sqrt[3]{\epsilon}\Delta}{4}\right) < en \). We will choose \(r \) in \(\left[\frac{\sqrt[3]{\epsilon}\Delta}{4}, \frac{\sqrt[3]{\epsilon}\Delta}{2}\right] \).

Lemma 8.4. If \(\epsilon > 32\bar{\epsilon} \), then (every \(r \) is good) \(\forall r \in \left[\frac{\sqrt[3]{\epsilon}\Delta}{4}, \frac{\sqrt[3]{\epsilon}\Delta}{2}\right] \), \(|S_1^{(r, \epsilon)}| \cdot |S_2^{(r, \epsilon)}| \leq \epsilon \cdot |X_1(r)| \cdot |X_2(r)| \).
Proof. Fix some \(r \in [\sqrt{\frac{\Delta}{4}}, \sqrt{\frac{\Delta}{2}}] \) and \(\epsilon > 32\bar{\epsilon} \). Note that \(|S_1^{(r, \epsilon)}| \leq |X_1^{(r)}| \), and \(|S_2^{(r, \epsilon)}| \leq |B(u, r + c\sqrt{\Delta})| \).

Also, it holds that \(r + c\sqrt{\Delta} \leq \frac{\sqrt{\Delta}}{2} \leq \frac{\sqrt{\Delta}}{2} + c\sqrt{\Delta} \leq \frac{\epsilon}{\bar{\epsilon}} \sqrt{\Delta} \leq \frac{\sqrt{\Delta}}{2}\left(\frac{1}{2\sqrt{32}} + c\right) \leq \frac{\sqrt{\Delta}}{2} \), where the last inequality holds if we choose \(c = \frac{1}{32\sqrt{2}} \), which will work for all inductive steps. Therefore,

\[
|S_2^{(r, \epsilon)}| \leq |B(u, r + c\sqrt{\Delta})| \leq \left|B(u, \frac{\sqrt{\Delta}}{4})\right| \leq \epsilon \frac{\sqrt{\Delta}}{2n}.
\]

Therefore, \(|S_1^{(r, \epsilon)}| \cdot |S_2^{(r, \epsilon)}| \leq \epsilon \cdot |X_1^{(r)}| \cdot \frac{n}{2} \leq (|X_2^{(r)}|\geq \frac{\epsilon}{2}) \leq \epsilon \cdot |X_1^{(r)}| \cdot |X_2^{(r)}| \).

\(\square \)

Lemma 8.5. There exists \(r \in [\sqrt{\frac{\Delta}{4}}, \sqrt{\frac{\Delta}{2}}] = I, \) such that for all \(\epsilon \leq 32\bar{\epsilon} \), \(|S_1^{(r, \epsilon)}| \cdot |S_2^{(r, \epsilon)}| \leq \epsilon \cdot |X_1^{(r)}| \cdot |X_2^{(r)}| \).

We first prove a small lemma. Let \(0 \leq n < 2 \) be any real numbers, and let \(A(r_1, r_2) \) denote the size of the strip \(B(u, r_2) \setminus B(u, r_1) \).

Lemma 8.6. \(A(\sqrt{\frac{\Delta}{4}}, \sqrt{\frac{\Delta}{2}}) \leq 4\bar{\epsilon}n. \)

\(\square \)

Proof of Lemma 8.5. We say that \(r \) is a “bad” radius for some \(\epsilon \leq 32\bar{\epsilon} \) if \(|S_1^{(r, \epsilon)}| \cdot |S_2^{(r, \epsilon)}| \geq \epsilon |X_1^{(r)}| \cdot |X_2^{(r)}| \).

Denote by \(J \) the union of the intervals that constitute all bad values of \(r \) from \(I \). We will show that \(|J| < |I| \). We build \(J \) iteratively. At the beginning \(J = \emptyset \). At some step of the construction, consider all the values of \(r \in I \setminus J \) and all the values of \(\epsilon \leq 32\bar{\epsilon} \) such that the pair \((r, \epsilon)\) is a “bad” pair: \(r \) is bad for \(\epsilon \).

From all these pairs we choose one with the maximum \(\epsilon \) (we say maximum as we consider \(\epsilon \in [1/n, 32\bar{\epsilon}] \)). Denote this pair by \((\hat{r}, \hat{\epsilon})\). We add to \(J \) segment of length \(2c\sqrt{\Delta} \) with center in \(\hat{r} \): \(\hat{r} - c\sqrt{\Delta}, \hat{r} + c\sqrt{\Delta} \).

Note that the length of the segment we add does not increase from step to step. We have to prove that \(|J| < |I| \) on the termination of the algorithm.

Consider the chosen pair \((\hat{r}, \hat{\epsilon})\). Then, \(A(\hat{r} - c\sqrt{\Delta}, \hat{r} + c\sqrt{\Delta}) \geq |S_1^{(\hat{r}, \hat{\epsilon})} \cup S_2^{(\hat{r}, \hat{\epsilon})}| = |S_1^{(\hat{r}, \hat{\epsilon})}| + |S_2^{(\hat{r}, \hat{\epsilon})}| \).

Note that \(|X_1^{(\hat{r})}| \geq |B(u, \sqrt{\frac{\Delta}{4}})| \geq \hat{\epsilon}n \). Therefore, \(|S_1^{(\hat{r}, \hat{\epsilon})}| \cdot |S_2^{(\hat{r}, \hat{\epsilon})}| \geq (\text{\(\hat{r}, \hat{\epsilon} \) is bad}) \geq \hat{\epsilon}X_1^{(\hat{r})} \cdot |X_2^{(\hat{r})}| \geq \frac{\hat{\epsilon}n^2}{2}. \)

Therefore, by the inequality of arithmetic and geometric means

\[
A(\hat{r} - c\sqrt{\Delta}, \hat{r} + c\sqrt{\Delta}) > 2\sqrt{\frac{\hat{\epsilon}n}{2}}.
\]

Therefore, we conclude that

\[
|J| \leq \sum_{i=1}^{t} |J_i| = \sum_{i=1}^{t} 2c\sqrt{\epsilon_i} \Delta = 2c\Delta \sum_{i} \sqrt{\epsilon_i} < (\text{have to prove}) < |I| = \frac{\sqrt{\Delta}}{4}.
\]

Recall that \(c = \frac{1}{32\sqrt{2}} \), therefore, we have to show that \(\sum_i \sqrt{\epsilon_i} < 4\sqrt{2}\sqrt{\epsilon} \). Note that each point of \(I \) belongs to at most 2 segments of \(J \), because the radius \(\hat{r} \) is always chosen outside the segments of \(J \), and the lengths of the segments do not increase from step to step. Therefore,

\[
\sum_i 2\sqrt{\frac{\epsilon_i}{2}} n < \sum_i A(\hat{r}_i - c\sqrt{\epsilon_i} \Delta, \hat{r}_i + c\sqrt{\epsilon_i} \Delta) \leq (\text{each point belongs to at most 2 segments}) \leq 2A(\sqrt{\frac{\Delta}{4}}, \sqrt{\frac{\Delta}{2}}) \leq 2\cdot 4\cdot \hat{\epsilon}n.
\]

Therefore \(\sum_i \sqrt{\epsilon_i} < 4\sqrt{2}\sqrt{\epsilon} \), which completes the proof. Note that this process can be computed in polynomial time, by discretization of values \(\epsilon \) and \(r \).

This completes the proof of the theorem.

\(\square \)
References
