1. (a) Prove that K_n (the n-point equilateral space) embeds isometrically into ℓ_p, for all $1 \leq p \leq \infty$.

(b) Prove that K_n embeds isometrically into $\ell_\infty^{O(\log n)}$.

(c) Show that any embedding of K_n into \mathbb{R}^1, incurs distortion at least $n - 1$.

Bonus Prove that the number of dimensions needed to embed K_n isometrically into ℓ_2 is at least $n - 1$.

2. (a) Show that an unweighted graph $K_{1,3}$ (this is basically a 4 point star graph) cannot be isometrically embedded into ℓ_2.

(b) Find a value $\alpha > 1$ (as big as you can) so that you can show that any embedding of $K_{1,3}$ into Euclidean space requires at least distortion α (Hint: construct an embedding into the plane with the smallest distortion. Try to show this is essentially the best possible way to embed into ℓ_2).

3. For the next questions, recall the definition of the ℓ_q-dist (f) we gave in Lecture 1.

(a) Give an embedding of K_n into \mathbb{R}^1 with ℓ_1-dist $(f) = O(\log n)$. Try to improve the embedding to obtain ℓ_1-dist $(f) = O(\sqrt{\log n})$.

(b) Let (X, d_X), (Y, d_Y) and (Z, d_Z) be any n-point metric spaces. Let $f : X \to Y$, and $g : Y \to Z$ be any embeddings. Is it true that ℓ_1-dist $(f \cdot g) \leq \ell_1$-dist $(f) \cdot \ell_1$-dist (g)? Prove that for any $1 \leq q < \infty$, for (p, s) s.t. $\frac{1}{p} + \frac{1}{s} = 1$, it holds ℓ_q-dist $(f \cdot g) \leq \ell_{qp}$-dist $(f) \cdot \ell_{qs}$-dist (g). Use Hölder’s inequality.

4. Following is a definition of a dimension for general metric spaces.

Definition 1.1. Let (X,d) be a metric space. The **doubling constant** of X is the minimal k such that for all $x \in X$, for all $r > 0$, $B(x,r)$ can be covered by at most k balls of radius $r/2$. The **doubling dimension** of X is $\dim(X) = \lceil \log_2(k) \rceil$, where k is the doubling constant of X.

Let X be a metric space with doubling dimension d.

(a) Let $B(x,r) \subseteq X$ denote a ball of radius r around $x \in X$. Show that for any $\epsilon \leq r/2$, there exists an ϵ-dense $Z \subset B(x,r)$, of size $(\frac{r}{\epsilon})^{O(d)}$.

(b) Use the previous item to show that if $Z \subseteq B(x,r)$ is ϵ-separated, then $|Z| = (\frac{\epsilon}{r})^{O(d)}$. Conclude that there exists an ϵ-net of $B(x,r)$ of size $(\frac{\epsilon}{r})^{O(d)}$.
