
Algorithms in Computational Biology

Lecture # 6: MLE, Pairwise Alignment Score

Functions,Heuristics,FASTA,BLAST

Dolev Rahat

November 28, 2016

1 Maximum Likelihood Estimation

Suppose we have a series of N coin �ips D ∈ {H,T}N . For an individual �ip we

have xi ∼ Ber(θ) with xi =

{
1 ith tossing yields head

0 otherwise
. To estimate θ we will

maximize the likelihood L(θ;D) = P (D|θ) = θNH · (1− θ)NT , where NH is the
number of heads and NT the number of tails. In the previous lecture we saw
that by di�erentiating the likelihood and equating the derivative to zero we get
θMLE = NH

NH+NT
.

We will now extend the maximum likelihood estimation to the multinomial
case. Suppose that we now throw a die N times. We will again get a series of
outcomes D ∈ {1, 2, 3, 4, 5, 6}N . We will mark with N1, ..., N6 the number of
throws in which we got each digit.

We now have D ∼ Mult(θ) with θ =

θ1...
θ6

, where θi is the probability to

get i in a given throw.
The likelihood is:

L(θ;D) = Π6
i=1θ

Ni
i (1)

It would be more convenient to us to maximize the log-likelihood:

LLR(θ;D) = Σ6
i=1Ni · log(θi) (2)

Since the log-likelihood function is monotonically increasing, the value of θ
maximizing the log-likelihood is also the maximum of the likelihood itself. We
would like to maximize the log likelihood by di�erentiating with respect to θ
as we did in the binomial case. However, the multinomial case is a little more
complicated because we now need to satisfy two additional constraints:

1

Σ6
i=1θi = 1 (3)

∀i ∈ [6] : θi ≥ 0 (4)

Note that since θi is a probability, we actually need to satisfy ∀i : θi ∈ [0, 1],
but given the �rst condition it is enough to require that the parameters are
non-negative in order to satisfy this. In fact since we are maximizing the log
likelihood we will not need to explicitly formulate even this form of constraint
(4) as the log function is not de�ned over negative values.

In order to maximize the likelihood under these constraints we will use a
Lagrange multiplier. Lagrange multipliers follow the general form:

J(~x,~λ) = f(x)− ΣjλjCj(x) (5)

Where f is the function being maximized, λ a vector of weights and C a
vector of constraints.

We can transform constraint (3) to the functional form:

C(~θ) = Σ6
k=1θk − 1 (6)

By substituting equations (1) and (6) into equation (5) we get:

J(~θ, λ) = Σ6
i=1Ni · log(θi)− λ(Σ6

k=1θk − 1) (7)

Note that the monotonicity of the log likelihood function also means that
we do not need to explicitly account for constraint (4), as negative values of θi
will always achieve lower values of L then non-negative values.

By di�erentiating J(~θ, λ) with respect to both θ and λ (see previous lecture
for details) we get:

θMLE
i =

Ni

N

2 Pairwise Alignment Score Functions

Suppose we are given two sequences a, b and want to decide between the two
following hypotheses:

H0 - the sequences are independent.
H1 - the sequences have a common ancestor.
From Neyman-Pearson lemma we know that the optimal test for deciding

between the hypotheses is the likelihood ratio test:

σ(a, b) = log
P1(a, b)

P0(a) · P0(b)

2

In practice we can use pairwise alignment with the following scoring function:

σ(a, b) = Σi,j log
P1(ai,bj)

P0(ai)·P0(bj)
. Where P1(ai, bj) is the probability to �nd

position ai aligned to position bj under the assumption that the sequences
indeed have a common ancestor. To estimate the independent probabilities
P0(ai), P0(bj) we can use a database of sequences and �nd the frequencies of
the residues ai and bj .

Caveats:
1. We need to make sure that we use a database that is relevant to the

sequences under study. If we use a database with sequences that did not orig-
inate from a biological context that is relevant to our sequences it is also
likely that the distribution of residues in the database will be di�erent from the
distribution from which the sequences that we study were drawn, and then the
estimates that we will obtain may be misleading.

2. The database may contain redundant sequences, for example paralogous1

sequences that originated from a gene duplication event. Under such conditions,
the occurrence of the residues in the database will not be i.i.d., and the estimates
we will obtain from the database will not be consistent with the assumption

of independence.

3 Heuristic algorithms: FASTA and BLAST

Motivation: Suppose we are given a protein sequence Q of n = 103 amino acids
(AAs), and a database DB with approximately 106 protein sequences with a
mean length of n = 103 AAs, and are asked to align Q against all sequences
P ∈ DB. Recall that using dynamic programming, the time complexity of this
computation is O(n2|P |), or something in the order of 106·103·103 computations.
Even using a modern computer this will take a few hours. Therefore, we want a
faster way to �nd the sequences in DB that are similar to Q. To this end we will
use heuristic algorithms, which are algorithms that do not guarantee an optimal
solution. In this case we will require a preliminary match of several AAs/bases
between P ∈ DB and Q as a prerequisite for pursuing further alignment of the
two sequences. In other words, we are willing to sacri�ce some of the sensitivity
of dynamic programming in favor of speed.

1Paralogs - genes/proteins with a common ancestor that are found in the same species.

As opposed to orthologs which are genes/proteins with a common ancestor in di�erent species.

3

3.1 FASTA (Pearson and Lipman 1985)

Assumptions:
1.Q and P share a common identical sub-sequence.
2. This sub-sequence can be extracted while permitting only small gaps in

the alignment between Q and P .
In other words, if we plot the dot matrix of Q and P we will see stretches of

identical positions between the sequences, as depicted in Fig. 1B.
Input:
query sequence Q; reference database DB; integer ktup indicating length of

seed (preliminary match). Alternatively, the input may be a pre-de�ned list of
seed sequences of interest.

Algorithm

0. Preprocessing: For every P ∈ DB we construct a hash table indicating for
each seed of length ktup its start coordinates in P. If there are several occurrences
of s in P all of them will be reported. If the input is a list of seeds, the hash
table will report the start coordinates of all seeds that are represented in P .

Note that this step should only be performed once for the entire database and
need not be repeated every time the database is queried with a new sequence.

1. Build a similar hash table for Q.
2. Iterate over the hash tables of Q and P , for all seeds s ∈ P ∩ Q de�ne

i: start coordinate of s in Q, j: start coordinate of s in P , offset(s) = j − i
(Fig. 1A)

3. Compute distribution of o�sets. Choose diagonal corresponding to the
most frequent o�set value (Fig. 1B).

4. Extend the seeds chosen in step (2) in both directions using matches and
mismatches (no gaps) to �nd maximal ungapped matches (Fig. 1C).

5. Join ungapped matched regions using dynamic programming within a
(narrow) bandwidth b around the diagonal2 (Fig. 1D).

Time Complexity Analysis

De�nem := |DB|, b := bandwidth for extension of ungppedmatcheswith gaps
0. Preprocessing: Construction of hash tables for every P ∈ DB: O(n ·m)
1. Construction of the hash table for Q: O(n)
2. Calculating o�sets: O(n ·m)
3. Finding most frequent diagonal: O(n ·m)
4. Extending matches: O(n ·m)
5. Adding gaps: O(b2 ·m) (but b is small)
Overall: O(n ·m). In conclusion we reduced the runtime from O(n2m) to

O(nm), with some expense in sensitivity.

2Note that the restriction to a narrow band is justi�ed by the assumption that there exist
an alignment of P and Q with only small gaps.

4

Figure 1: FASTA algorithm: (A) dot matrix for the matched seeds of
P and Q. Each dot at cell (i,j) denotes a seed appearing in index i
in P and in j in Q. (B) Selecting for frequent o�sets. (C) Extending
the seeds without gaps (D) Introducing gaps with dynamic programming
Source: [1] �g. 1.

3.2 BLAST: Basic Local Alignment Search Tool (Altschul
et al. 1990)

BLAST operates on principles similar to FASTA. The major di�erence is that
it allows mismatches in the seed sequences. For example if Q contains the sub-
sequence ACG, the sequences ACC and ACT are also potential seeds and will
be represented in its hash table.

To generate the hash table we will decide on a similarity threshold T . next
we will de�ne for every s ∈ P s.t. length(s) = ktup

NT (s) = {v ∈ Σktup s.t.Σiσ(vi, wi) ≥ T}

where Σktup is the group of all strings of length ktup from the alphabet of interest
(such as nucleotides or amino acids). All sequences inNT (s) represented in P are
added to the hash table. The hash table for Q is constructed in the same way.
Note that allowing for mismatches in the seeds provides increased sensitivity
compared to FASTA, with some increase in runtime. The level of sensitivity can
be adjusted by the choice of T : lower T values will provide higher sensitivity but
will also increase runtime, whereas increasing T will provide quicker performance
but lower sensitivity.

5

Algorithm

Input: Q,DB, ktup, T
Preprocessing:
0.1 For every P ∈ DB map all seeds to a hash table H(P)
0.2 For each seed s ∈ Σktup compute NT (s)
1. For each seed s search the query sequence Q for seeds matching NT (s)
Steps 2-5 identical to FASTA.

References

[1] William R Pearson and David J Lipman. Improved tools for biological
sequence comparison. Proceedings of the National Academy of Sciences,
85(8):2444�2448, 1988.

6

