Universality of Computation

What is computing?
Physical Computation

ChAOS Optical Layout

Science Camera

Beam Splitters

Lensed Array

Wavefront Sensor

Interferometer

Off-Axis Parabola #1
(Collimator)

Off-Axis Parabola #2
(Camera mirror)

He-Ne Laser

Tip/Tilt Mirror

Tod Mires

Light from Telescope

(use laser out of plane of this page, reflects off of a mirror (not shown) and is sent to the fold Mirrors)
Mathematically defined computation

\[
\begin{align*}
 f(x, 0) &= 1 \\
 f(x, y) &= g(y, f(x, y-1)) \\
 g(z, 0) &= 0 \\
 g(z, w) &= h(w, g(z, w-1)) \\
 h(r, 0) &= r \\
 h(r, s) &= h(r, s-1) + 1
\end{align*}
\]

```python
def is_prime(n):
    for i in range(2, n):
        if n % i == 0:
            return False
    return True
```
Turing Machines

Symbol read

<table>
<thead>
<tr>
<th>state</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0, R, b</td>
<td>1, L, g</td>
</tr>
<tr>
<td>b</td>
<td>1, L, b</td>
<td>0, L, a</td>
</tr>
<tr>
<td>z</td>
<td>1, R, x</td>
<td>0, L, a</td>
</tr>
</tbody>
</table>

Symbol written | Head Movement | New State
Turing Machine for adding 1

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1, _, b</td>
<td>0, L, a</td>
</tr>
<tr>
<td>b</td>
<td>0, _, b</td>
<td>1, _, b</td>
</tr>
</tbody>
</table>

Start (with head on least significant bit)
Halt
Universal Computers

• Theoretical version: there exists a single Universal Turing Machine that can simulate all other Turing machines
 – The input will be a coding of another machine + an input to the other machine
• Hardware version: stored program computer
• Software version: interpreter

```python
def simulate(program, input):
    """ Accepts a string that holds a python function definition and an input string, and simulates the function when it is given the input string as its parameter, returning the value that the function returns""
    ...
```
The Church-Turing Hypothesis

Everything “computable” is computable by a Turing machine

– Physical interpretation
– Conceptual interpretation
– Definition of Computation
– Everything computable is computable by a Python program
– All “good enough” computers are equivalent
CTH: The Modern Version

Everything efficiently computable is computable efficiently by a randomized Turing machine

– “Efficiently”: in “polynomial time”. Running time is $O(n^c)$ for some constant c.

– “Randomized”: allow to “flip coins” – use randomization

– All “good enough” computers are equivalent -- even if you worry about efficiency
CTH and Quantum Physics

- Only known challenge to the “modern” version of CTH
- We do not know how to simulate quantum mechanical systems efficiently
- The quantum “probability amplitudes” are different from normal probabilities
- Maybe “quantum computers” can efficiently do more than normal randomized computers
 - Efficient “quantum algorithm” for factoring is known
- Can “quantum computers” be built?
 - Existing physics? New physical laws? Technology?
- “Quantum CTH version”: .. By a quantum Turing Machine
CTH and Chaos

• The physical world is analog
• When we simulate it on a digital device we use a given precision
 – Input and output are given in finite precision
 – How many bits of precision do we need?
 – How much can ε error in the input affect the output?
 – Normally: a little
 – Chaotic systems: a lot
• When we simulate a digital device on an analog device we can encode many bits in one analog signal
 – Limits to precision of analog systems: atoms, quantum effects
 – Hard to think of a physical signal of even 64 bits of precision
CTH and the Brain

• Is the brain just a computer?
• Metaphysics: The mind-body problem
 – Monism: everything is matter -- including humans
 – Dualism: there is more ("soul", "mind", "consciousness" …)
• Technical differences
 – Parallel, complicated, analog, …
 – Still equivalent to a Turing Machine
AI

• Why can’t we program computers to do what humans easily do?
 – Recognize faces social situations
 – Understand human language (well)

• Processing power?

• Software?
 – Scruffy vs. Neat debate

• Big data
The Turing Test

A

The Turing Test

B

Which is conscious: A or B?
The Brain vs. Google Cloud

• There are 10^9 -- 10^{10} neurons in the brain
• Each neuron receives input from 10^3 -- 10^4 synapses
• Each neuron can fire about 10^0 -- 10^2 times/sec
• Total computing power of brain is 10^{12} -- 10^{16} ops/sec
• Google cloud has 10^7--10^9 cores
• Each core can compute 10^8--10^{10} ops/sec
• Total computing power of Google cloud is 10^{15} -- 10^{19} ops/sec
When Computers are Smarter than us?

• Can do “intelligent” things that we care about better than humans.
 – Scientific/Medical Discoveries, Winning/Avoiding Wars, Running Companies/Commerce, Creating Movies/Books/Games, Educating, Designing Computers/Programs/Systems/Robots...

• Will never happen?
• Quite useful, but no big deal?
• Singularity?
• Augmented-men vs. Huddled masses?
• Robot Uprising?
The limits of computation and mathematics
Universal Computers

• Theoretical version: there exists a single Universal Turing Machine that can simulate all other Turing machines
 – The input will be a coding of another machine + an input to the other machine

• Hardware version: stored program computer

• Software version: interpreter

```python
def simulate(program, input):
    """ Accepts a string that holds a python function definition and an input string, and simulates the function when it is given the input string as its parameter, returning the value that the function returns"""
```
The Halting problem

def halt(program, input):
 """ Accepts a string that holds a python function definition and an input string, and simulates the function when it is given the input string as its parameter, returning True if the program ever returns and returning False if the program never terminates and never returns(e.g. goes into an infinite loop)"""

def auto_halt(program):
 """ returns true if the given program halts when given itself as an input"""

 return halt(program, program)

def paradox(program):
 if autoHalt(program):
 while(True):
 pass
 else
 return True;
The halting problem can not be solved!

Assume: There is a program for computing halt

\Rightarrow There are also programs for self_halt and paradox

Question: Will paradox halt when given its own code as its parameter?

Yes? \Rightarrow auto_halt should return True when given paradox’s code as input \Rightarrow paradox will go into an infinite loop \Rightarrow paradox will not halt \Rightarrow contradiction

No? \Rightarrow auto_halt should return False when given paradox’s code as input \Rightarrow paradox will return immediately \Rightarrow contradiction

Contradiction to the assumption!

Theorem: the halt method can not be written.
Diophantine Equations cannot be Solved

Fact: It is possible to write
`compile_to_equations`

Proof idea: a number can encode the
complete history of the
computation.

Theorem: There does not exist any
program that can solve
diophantine equations

\[
\begin{align*}
x^3 y^2 z + xwz - 3 &= 0 \\
x^2 z + 3w^2 z^3 - 2z &= 0 \\
\ldots \\
z^7 w - zw^6 - 2 &= 0
\end{align*}
\]

```python
def compile_to_equations(program, input):
    """ Accepts a string that holds a python function definition and an input string, and returns a set of Diophantine equations that have a solution if and only if the program halts on the given input."""
```
Formal Proofs

Theorem: \(\Omega \vDash \exists M, \exists M \vdash O \vdash \phi \phi \phi \)

Proof:
\[
\begin{align*}
\Omega &\vDash \bullet \circ M \vDash \rho \rho \\
\exists M, \Omega M \vDash \rho \rho M \\
\exists \exists \Omega \bullet \circ \rho \vDash \bullet \bullet \\
\cdots \\
\end{align*}
\]

Axiom

Follows from previous lines

\(\Omega \vDash \exists M, \exists M \vdash O \vdash \phi \phi \phi \)

QED
Axiomatic System

• A *syntactic* way to show semantic mathematical truths
• Axioms + Deduction rules (logic)
• Must be *effective*
 – trivial to determine if a proof is correct
• Must be *sound*
 – Anything you prove must be true
• Can it be *complete*?
 – Prove all true mathematical statements
Zermelo-Fraenkel Set Theory

• The basis of all mathematics (one possibility)
 \[\forall S \forall T [\forall z (z \in S \iff z \in T) \implies S = T] \]
 \[\forall S \exists T \forall z (z \subseteq S \iff z \in T) \]

...

• Effective
• Sound, we think
• Anything you prove in Math courses really uses ZFC
• The details are not important, yet we will prove:
• **Theorem:** ZFC is not complete
def is_zfc_proof(theorem, proof):
 """ Accepts a string that holds a supposed theorem and a string that holds a supposed ZFC proof of the theorem, and returns True if this is indeed a valid ZFC proof of the theorem."""
Computation theory is part of mathematics

```python
def compile_to_halt_thm(program, input):
    """ Accepts a string that holds a python function definition and an input string, and returns a string of a supposed theorem that states that the program halts on the given input."""

def compile_to_nohalt_thm(program, input):
    """ Accepts a string that holds a python function definition and an input string, and returns a string of a supposed theorem that states that the program does not halt on the given input."""
```
Godel’s incompleteness theorem

\[\text{Theorem: } \text{ZFC is not complete (and neither is anything else)}\]

\[\text{def } \text{halt}(\text{prog, inp}):\]
\[\text{thm}_y = \text{compile_to_halt_thm(} \text{prog, inp)}\]
\[\text{thm}_n = \text{compile_to_nohalt_thm(} \text{prog, inp)}\]
\[\text{for } p \text{ in all_possible_strings:}\]
\[\text{if is_zfc_proof(} \text{thm}_y, p):\]
\[\text{return True}\]
\[\text{if is_zfc_proof(} \text{thm}_n, p):\]
\[\text{return False}\]

\[\text{if all true mathematical statements have ZFC proofs then } \text{halt} \text{ can be solved!}\]