What is recursion?

- Similar to mathematical **induction**
- A recursive definition is **self-referential**
- A larger, more complex instance of a problem is defined in terms of a smaller, simpler instance of the same problem
- A **base case** must be defined explicitly
When do we use recursion?

- We are given a large problem (say of size n)
- We notice that:
 - There is some simple base case we know how to solve directly (say n=0)
 - The solution to the large problem is composed of solutions to smaller problems of the same type
 - If we could solve a smaller instance of the problem (say n-1), we could use that solution to solve the large problem
How do we use recursion?

- A function may call itself
- Such a function is called **recursive**
- There must be some base case that is handled explicitly, without a recursive call
- The other case has to make sure there is progress towards the base case.
- The recursive function call will use simpler/smaller arguments
The Three Laws of Recursion

1. A recursive algorithm must have a base case.
2. A recursive algorithm must change its state and move toward the base case.
3. A recursive algorithm must call itself recursively.
Recursive factorial

- \(n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n \)
- By definition, \(0! = 1 \) (base case)
- Recursive definition: \(n! = (n-1)! \cdot n \)
- For example:

 \[
 4! =
 \]

 \[
 3! \cdot 4 =
 \]

 \[
 (2! \cdot 3) \cdot 4 =
 \]

 \[
 (((1! \cdot 2) \cdot 3) \cdot 4 =
 \]

 \[
 (((0! \cdot 1) \cdot 2) \cdot 3) \cdot 4 =
 \]

 \[
 (((1 \cdot 1) \cdot 2) \cdot 3) \cdot 4 = 24
 \]
def factorial(n):
 if n == 0:
 return 1
 else:
 return n*factorial(n-1)
What’s happening here?

def factorial(n):
 if n == 0:
 return 1
 else:
 return n*factorial(n-1)

i = factorial(4);

4 · 6 = 24

factorial(3)

3 · 2 = 6

factorial(2)

2 · 1 = 2

factorial(1)

1 · 1 = 1

factorial(0)

1

3 · 2 = 6

factorial(2)

2 · 1 = 2

factorial(1)

1 · 1 = 1

factorial(0)

1
def iterative_factorial(n):
 res == 1:
 for i in range(1,n+1):
 res *= i
 return res
Recursion vs. loops

- We could have calculated factorial using a loop
- In general, loops are more efficient than recursion
- However, sometimes recursive solutions are much simpler than iterative ones
- Recursion can be a powerful tool for solving certain types of problems
- Let's see a classic example
Recursive multiplication

- $X = 10 \times 5$
- How to solve recursively? Think Recursively!
- What will be the progression of the algorithm?
 - Divide to subproblems:
 - $X = 10 \times 5 = 10 + 10 \times 4 = 10 + 10 + 3$
- What will be our base case?
 - Something that is easy to solve - a mathematical rule maybe?
 - $X = X \times 1!$
Recursive multiplication

```python
def rmult(n1, n2):
    if n1 == 1:
        return n2
    return n2 + rmult(n1 - 1, n2)
```

#rec ...5*10 ==10+(4*10)==10+10+(3*10) ...
Is palindrome?

- [1,2,3,4,3,2,1] is a palindrome
- יֶלֶד כוֹתֵב בְּתוֹךְ דְּלִי is also palindrome
- Why recursion?
- What’s the base case?
def is_pal(s):
 if len(s) <= 1:
 return True
 else:
 return (s[0] == s[-1]) and is_pal(s[1:-1])

however...

def is_pal2(s):
 return s == s[:::-1]
Pascal Triangle

- Why recursion?
- Let’s say we are interested on the n line in the triangle (pascal(n))
- What will be the base case?
- How to progress?
import sys

def pascal(n):
 if n == 1:
 return [1]
 else:
 line = [1]
 previous_line = pascal(n-1)
 for i in range(len(previous_line)-1):
 line.append(previous_line[i] + previous_line[i+1])
 line += [1]
 return line

print(pascal(int(sys.argv[1])))
Fractals

A fractal is a never-ending pattern. Fractals are infinitely complex patterns that are self-similar across different scales. They are created by repeating a simple process over and over in an ongoing feedback loop.
import turtle

def draw_spiral(tur, line_len):
 if line_len > 0:
 tur.forward(line_len)
 tur.right(90)
 draw_spiral(tur, line_len-5)

tur = turtle.Turtle()
draw_spiral(tur, 100)
Fractal trees

Draw a fractal tree:

the shape of this branch resembles the tree itself. This is known as *self-similarity*, each part is a “reduced-size copy of the whole.”
Fractal trees

```python
import turtle

def tree(branch_len, tur):
    if branch_len > 5:
        turtle.forward(branch_len)
        turtle.right(20)
        tree(branch_len-15, trtle)
        turtle.left(40)
        tree(branch_len-15, trtle)
        turtle.right(20)
        turtle.backward(branch_len)

def main():
    t = turtle.Turtle()
    t.left(90)
    t.up()
    t.backward(250)
    t.down()
    tree(t, 100)

main()
```
import turtle
import random

def prob_tree(branch_len, trtle):
 deg = random.uniform(0, 40)
 if branch_len > 5:
 trtle.forward(branch_len)
 trtle.right(deg)
 prob_tree(branch_len-15, trtle)
 trtle.left(40)
 prob_tree(branch_len-15, trtle)
 trtle.right(40-deg)
 trtle.backward(branch_len)
Exploring all states using recursion

Backtracking

- We can use recursion to go over many options, and do something for each case.

- Example:
 - printing all subsets of the set $S = \{0, \ldots, n-1\}$ (printing the power set of S).
 - Difficult to do with loops (but possible).
 - Much simpler with recursion.
Power Set - The basic idea

- Lets decompose the problem to two smaller problems of the same type.

- The recursive decomposition:
 - Print all subsets that contain an item,
 - Then print all the subsets that do not contain it.

- Keep track of our current “state”.
 - items that are in the current subset,
 - items not in the current subset,
 - items we did not decide about yet.
def power_set(n):

cur_set = [False]*n

power_set_helper(cur_set, 0)
def power_set_helper(cur_set, index):
 #base: we picked out all the items in the set
 if index == len(cur_set):
 print_power_set(cur_set)
 return

 # runs on all sets that include this index
 cur_set[index] = True
 power_set_helper(cur_set, index+1)

 # runs on all sets that does not include index
 cur_set[index] = False
 power_set_helper(cur_set, index+1)
def print_power_set(cur_set):

 print('{', end=' ')
 for (idx, in_cur_set) in enumerate(cur_set):
 if in_cur_set:
 print(idx, end=' ')
 print('}')

print('}')
power_set and the stack

{0,1,2} {0,1} {0,2} {0}

Index=0 Index=1 Index=2

...
power_set and the stack
Sort using recursion - Quicksort

- A very efficient sorting algorithm
- A probabilistic algorithm:
- On average, the algorithm takes $O(n \log n)$ comparisons to sort n items.
- In the worst case, it makes $O(n^2)$ comparisons, though this behavior is rare.
Quick Sort

- Choose an element from the list called \textit{pivot}
- Partition the list:
 - All elements $<$ \textit{pivot} will be on the left
 - All elements \geq \textit{pivot} will be on the right
- Recursively call the \textit{quicksort} function on each part of the list
def quicksort(data):
 quicksort_helper(data, 0, len(data))

def quicksort_helper(data, start, end):
 if(start < end-1):
 pivot_idx = partition(data, start, end)
 quicksort_helper(data, start, pivot_idx)
 quicksort_helper(data, pivot_idx+1, end)
def partition(data, start, end):
 pivot_idx = random.randint(start, end-1)
 pivot = data[pivot_idx]
 swap(data, pivot_idx, end-1)
 pivot_idx = end-1
 end -= 1
 while (start < end):
 if (data[start] < pivot):
 start += 1
 elif (data[end-1] >= pivot):
 end -= 1
 else:
 swap(data, start, end-1)
 start += 1
 end -= 1
 swap(data, pivot_idx, start)
 return start

def swap(data, ind1, ind2):
 data[ind1], data[ind2] = data[ind2], data[ind1]
def partition(data, start, end):
 pivot_idx = random.randint(start, end-1)
 pivot = data[pivot_idx]
 swap(data, pivot_idx, end-1)
 pivot_idx = end-1
 end -= 1
 while (start < end):
 if (data[start] < pivot):
 start += 1
 elif (data[end-1] >= pivot):
 end -= 1
 else:
 swap(data, start, end-1)
 start += 1
 end -= 1
 swap(data, pivot_idx, start)
 return start
On each level of the recursion, we go over lists that contain total of n elements:

About n steps at each level
Quick Sort – Runtime Analysis (II)

- How many levels are there?
- It depends on the pivot value:
 - Let's say we choose each time the median value
 - Each time the list is divided by half:
 - $n/2$
 - $n/4$
 - \ldots
 - 1
 - There will be $\log(n)$ levels, and each takes n steps

It would take about $n\log(n)$ steps.
Quick Sort – Runtime Analysis (III)

- Lets say we choose each time an extreme value (smallest or largest) – it is unlikely
- Each time we get one list of size 1 and one of size n-1:
 - $\Rightarrow n-1$
 - $\Rightarrow n-2$
 - $\Rightarrow \ldots$
 - $\Rightarrow 1$

 ![Diagram of sorting process]

 - There will be n levels, and each takes n steps
 - It would take about n^2 steps
 - The efficiency is depended on the pivot choice!
Bonus Slides
A fractal that exhibits the property of self-similarity is the Sierpinski triangle.

Algorithm:
- Start with a single large triangle
- Divide this large triangle into four new triangles by connecting the midpoint of each side.
- Ignore the middle triangle that you just created
- Apply the same procedure to each of the three corner triangles
- The base is defined as the level of the triangle (how many inner triangles)
def draw_triangle(points, color, tur):
 tur.fillcolor(color)
 tur.up()
 tur.goto(points[0][0], points[0][1])
 tur.down()
 tur.begin_fill()
 tur.goto(points[1][0], points[1][1])
 tur.goto(points[2][0], points[2][1])
 tur.goto(points[0][0], points[0][1])
 tur.end_fill()

def get_mid(p1, p2):
 return ((p1[0] + p2[0]) / 2, (p1[1] + p2[1]) / 2)
def sierpinski(points, degree, tur):
 colormap = ['blue', 'red', 'green', 'white', 'yellow', 'violet', 'orange']
 draw_triangle(points, colormap[degree], tur)
 if degree > 0:
 sierpinski([points[0], get_mid(points[0], points[1]),
 get_mid(points[0], points[2])],
 degree-1, tur)
 sierpinski([points[1], get_mid(points[0], points[1]),
 get_mid(points[1], points[2])],
 degree-1, tur)
 sierpinski([points[2], get_mid(points[2], points[1]),
 get_mid(points[0], points[2])],
 degree-1, tur)
Understanding the Traceback

```python
# in file t.py:
def a(L):
    return b(L)

def b(L):
    return L.len()  # should have been len(L)

# in the python shell we try
a(L)
```

Traceback (most recent call last):
 File "<pyshell#4>" , line 1, in <module>
 a(L)
NameError: name 'L' is not defined
in file t.py:
def a(L):
 return b(L)

def b(L):
 return L.len() #should have been len(L)

in the python shell we try
a([1,2,3])

Traceback (most recent call last):
 File "<pyshell#6>", line 1, in <module>
 a(L)
 File "../t.py", line 2, in a
 return b(L)
 File "../t.py", line 6, in b
 return L.len()
AttributeError: 'list' object has no attribute 'len'
in file t.py:
def c(L):
 print((L[0]))
 print("bye")
in the python shell we try
a([])

Traceback (most recent call last):
 File "<pyshell#4>", line 1, in <module>
 c([])
 File "...	.py", line 10, in c
 print(L[0])
IndexError: list index out of range
Understanding the Traceback

in file t.py:
def c(L):
 print(L(0))
 print(“bye”)
in the python shell we try
c([1,2,3])

Traceback (most recent call last):
 File "<pyshell#7>", line 1, in <module>
 c([1,2,3])
 File "...	.py", line 9, in c
 print(L(0))
TypeError: 'list' object is not callable
Understanding the Traceback

in file t.py:
def c(L):
 print((L[0]))
 print(“bye”)

invalid syntax (but the next line is marked)
or unexpected EOF while parsing if this is the last line in the
Tips

- Pay attention to indentation (and other idle formatting issues) – it might imply on bugs

- Make sure you are in the right range when working with containers

- Adding printouts might be helpful

- You can use Google with the error name (e.g. TypeError: 'list' object is not callable)
Exploring all states using backtracking

- A backtracking algorithm can be used to find a solution (or all solutions) to a combinatorial problem.

- Solutions are constructed incrementally.

- If there are several options to advance incrementally, the algorithm will try one option, then backtrack and try more options.

- If you reach a state where you know the path will not lead you to the solution, backtrack!
N-Queens

The problem:
- On an NxN chess board, place N queens so that no queen threatens the other (no other queen allowed in same row, col or diagonal).
- Print only one such board.

Simplifying step:
- Place 1 queen somewhere in an available column then solve the problem of placing all other queens.

Base case:
- All queens have been placed.
The N-Queen Problem - helper functions

def illegal_placement(board, row, col):
 # Note: it is enough to look for threatening queens in lower columns
 for delta in range(1, col+1):
 # Check for queen in the same row or in upper diagonal or in lower diagonal
 if (board[row][col-delta] or
 (row-delta>=0 and board[row-delta][col-delta]) or
 (row+delta<len(board) and board[row+delta][col-delta])):
 return True
 return False

def print_board(board):
 for row in board:
 for q in row:
 print('Q', end=' ') if q else print('-', end=' ')
 print()
The N-Queen Problem - the recursion function

def place_queen_at_col(board, col):
 # Base case: we have passed the last column
 if col == len(board[0]):
 return True

 # Iterate over rows until it is okay to place a queen
 for row in range(len(board)):
 if illegal_placement(board, row, col):
 continue

 # Place the queen
 board[row][col] = True

 # Check if we can fill up the remaining columns
 if place_queen_at_col(board, col+1):
 return True

 # If not, remove the queen and keep iterating
 board[row][col] = False

 # If no placement works, give up
 return False
The N-Queen Problem - calling the recursive function

#This function uses a recursive helper method that really does the work

def place_queens(board_size):
 board = []
 for i in range(board_size):
 board.append([[]])
 for j in range(board_size):
 board[i].append(False)
 if place_queen_at_col(board, 0):
 print_board(board)
 else:
 print("No Placement Found!")

what would happen if we were trying to do it using:
board = [[False]*board_size]*board_size
Output of N-Queens