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Introduction What is reinforcement learning?

Reinforcement Learning: Agent-Environment Interaction

Reinforcement learning is learning how to behave in order to
maximize value or achieve some goal

It is not supervised learning, and it is not unsupervised learning
There is no expert to tell the learning agent right from wrong - it is
forced to learn from its own experience
The learning agent receives feedback from its environment - it can
learn by trying different actions at different situations

There is a tradeoff between exploration and exploitation

Environment

Agent
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Introduction What is reinforcement learning?

Toy Problem

ss′

sf
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Introduction Modeling the problem

Markov Decision Process (MDP)

S ∈ S - the state of the system

A ∈ A - the agent’s action
p (s′|s, a)- the dynamics of the system
r : S ×A → R - the reward function (possibly stochastic)

Definition
MDP is the tuple 〈S ,A, p, r〉

π (a|s) - the agent’s policy
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Introduction Modeling the problem

The Value Function

The un-discounted value function for any given policy π

Vπ (s) = E

[
T

∑
t=0

r (st, at)
∣∣∣s0 = s

]
T is the horizon - can be finite, episodic, or infinite

The discounted value function for any given policy π

Vπ (s) = E

[
∞

∑
t=0

γtr (st, at)
∣∣∣s0 = s

]
0 < γ < 1 is the discounting factor

The goal: find a policy π∗ that maximizes the value ∀s ∈ S

V∗ (s) = Vπ∗ (s) = max
π

Vπ (s)
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Introduction Bellman optimality

The Bellman Equation

The value function can be written recursively

Vπ (s) = E

[
∞

∑
t=0

γtr (st, at)
∣∣∣s0 = s

]
= E

a∼π(·|s)
s′∼p(·|s,a)

[
r (s, a) + γVπ

(
s′
)]

The optimal value satisfies the Bellman equation

V∗ (s) = max
π

E
a∼π(·|s)

s′∼p(·|s,a)

[
r (s, a) + γV∗

(
s′
)]

π∗ is not necessarily unique, but V∗ is unique
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Introduction Bellman optimality

The Q-Function

The value of taking action a at state s:

Q (s, a) = r (s, a) + γ E
s′∼p(·|s,a)

[
V
(
s′
)]

If we know V∗ then an optimal policy is to decide deterministically

a∗ (s) = arg max
a

Q∗ (s, a)

This means that V∗ (s) = max
a

Q∗ (s, a)

Conclusion
Learning Q∗ makes it easy to obtain an optimal policy
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Q-Learning Algorithm

Learning Q∗

If the agent knows the dynamics p and the reward function r, it can
find Q∗ by dynamic programing (e.g. value iteration)

Otherwise, it needs to estimate Q∗ from its experience
The experience of an agent is a sequence s0, a0, r0, s1, a1, r1, s2, . . .
The n-th episode is (sn, an, rn, sn+1)
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Q-Learning Algorithm

Learning Q∗

Q-Learning
Initialize Q0 (s, a) for all a ∈ A and s ∈ S
For each episode n

observe the current state sn

select and execute an action an

observe the next state sn+1 and reward rn

Qn (sn, an)← (1− αn)Qn−1 (sn, an)+ αn

(
rn + γmax

a
Qn−1 (sn+1, a)

)
αn ∈ (0, 1) - the learning rate
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Q-Learning Algorithm

Exploration vs. Exploitation

How should the agent gain experience in order to learn?

If it explores too much it might suffer from a low value
If it exploits the learned Q function too early, it might get stuck at bad
states without even knowing about better possibilities (overfitting)

One common approach is to use an ε-greedy policy
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Q-Learning Convergence analysis

Convergence of the Q function

Theorem
Given bounded rewards |rn| ≤ R, and learning rates 0 ≤ αn ≤ 1 s.t.

∞

∑
n=1

αn = ∞ and
∞

∑
n=1

α2
n < ∞

then with probability 1

Qn (s, a) −→
n→∞

Q∗ (s, a)

The exploration policy should be such that each state-action pair will be
encountered infinitely many times
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Q-Learning Convergence analysis

Convergence of the Q function

Poof - main idea
Define the operator

B [Q]s,a = r (s, a) + γ ∑
s′

p
(
s′|s, a

)
max

a′
Q
(
s′, a′

)
B is a contraction under the ‖ · ‖∞ norm

‖B [Q1]− B [Q2] ‖∞ ≤ γ‖Q1 −Q2‖∞

It is easy to see that B [Q∗] = Q∗

We’re not done because the updates come from a stochastic process
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Assumptions and Limitations

What assumptions did we make?

Q-learning is model free

The state and reward are assumed to be fully observable
POMDP is a much harder problem

The Q function can be represented by a look-up table
otherwise we need to do something else such as function
approximation, and this is where deep learning comes in!
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Summary
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Summary

Summary

The basic reinforcement learning problem can be modeled as an MDP
If the model is known we can solve precisely by dynamic programing
Q-learning allows learning an optimal policy when the model is not
known, and without trying to learn the model
It converges asymptotically to the optimal Q if the learning rate is not
too fast and not too slow, and if the exploration policy is satisfactory
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Summary

Further Reading

Richard S. Sutton and Andrew G. Barto
Reinforcement Learning: An Introduction.
MIT Press, 1998
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