Relational Model and
Relational Algebra

The Relational Model

* The relational model describes the logical
view of the data by using tables

— The logical view does not describe how the data
IS stored

— There are different ways of storing relations on
disks

— Efficiency is the major consideration when
determining how to store relations on disks

The Relational Algebra

* Relational algebra (RA) is a (mathematical)
query language for the relational model

* A query language is used for writing
guestions about the data

* Typically, a query language is high level,
namely, it describes what we want but not
how to compute it efficiently

SQL

« SQL is the concrete query language used in

relational database management systems
(RDBMS)

« Some of the differences between RA and
SQL are subtle

— The result of a relational-algebra expression is
always a set, whereas the result of an SQL
qguery could have duplicates

Why do we need to understand RA?

» Real queries are written in SQL, but are
translated by the query processor into
relational algebra

 Why?

— SQL is declarative, RA provides (high level)
operations for execution

— Optimization is easier in RA, since we can take
advantage of (provable) expression equivalences

5

What you should know

ow to calculate the result of a relational-
gebra expression over a set of relations

ow to determine whether two relational-

-
a

. How to write queries in relational algebra
H
a

gebra expressions are equivalent
. How to push selection and projection

. How to prove that the basic rel.-algebra
operators are independent of one another

The Relational Data Model

The Relational Model

Intuitively, a relation is a table

Formally, a relation has two parts: schema and
iInstance

Schema: Name(att,:dom,, ..., att,:dom,)

— Example: Students(sid: number, sname: string, year: int)

— In these slides, we usually omit the domain (i.e., type)

Instance: A set of tuples (rows) with arity and
types that match the schema

— Can be empty!
— No duplicates!

N'1AY2a 0D'NIN

* record, row, tuple
* MNIYA NIV ,N'-n

* All of the above are different names for the

same thing

Example Table .
snameis a

column name

Schema: or an attribute
Students(sid, sname, Students |
year)

sid |sname |year

240 |white

202 |jones

a row or tuple 450 |adams

Some Notes

* The order of the rows is not important

shname |sid |year sname |sid
smith 241 |4 white 240
white 240 |3 smith 241

* The order of the columns is important when

— Some columns do not have a name, or
— Two or more columns have the same name

* No null values

Relational Algebra

Relational Algebra

Relational algebra is a collection of operators on
relations
Operators may be unary or binary

The output of an operator is a relation

— That is, the algebra is “closed”
— Therefore, operators can be composed one on another

Note: the name of the output relation and some of
its attribute names may be undefined

Basic Operators

* Relational Algebra has 5 basic operators:

— Projection (n7un)

— Selection (n1'n1) These 5 operators
are Independent!

(How can this be
— Set difference (v19n) proven?)

— Union (TIN'x)

— Cartesian product (n'rop n%9on)
» Other operators can be defined using these:
intersection (qI1N'n), join (qi'y), division (17'n)

* A useful syntactic operator: renaming (ow 'n'v)

An Example of Relations

sid

course

20

202

0S

10

450

calculus

20

202

db

20

240

db

S = Students
T = Teachers
R = Studies

s

sid

sname

240

white

202

jones

adams

thame

dept

cohen

math

levy

CS

N70N

Projection

Projection

Projection is unary (i.e., it is applied to a
single relation)

Denoted by TA,,....A

n
A, are attributes

Projection returns a new relation that
contains only the columns A,,...,A,, from the
original relation

The output relation does not have a name

Projection: Example

* The projection (in this case) returns the pairs of
teacher id and course, such that the teacher

teaches the course

R

Conceptually,
Ttid,course R projection is
applied to
each tuple

0S 20 |os individually

course tid | course

calculus 10 | calculus

db 20 [db

db Fewer tuples in result. Why?

18

Think about it

* You can mention the same column more

than once in the projection, e.g., g4 &g R

* When computing a projection on a relation
with n tuples,

— What is the minimum number of tuples in the
result?

— What is the maximum number of tuples in the
result?

Selection

Selection

Unary operator

Written G-

— C is a Boolean condition over a single tuple
Returns the tuples that satisfy C

Just like projection, you can think of
selection as operating on each tuple
individually

Selection: Example

* Return the tuples for teacher number 20

R

Ctig=20 R

course

sid

course

0S

202

0S

calculus

202

db

db

240

db

db

Combining Selection and
Projection

* \WWhat does this compute?

R

tid |sid |course

201202 |os

10 {450 |calculus

20 1202 |db

20 1240 |db

71:course(Gtid=20 R)

_

Can we change
the order of
these two
operations?

23

Another Example

* How would you find the names of the

third year students?
3 R)

Tcsname(cyear=

S ?

What types of Conditions
can be used?

* The condition is made up of comparisons that are
connected using logical operators (and, or)

« Comparisons are between two attributes or
between an attribute and a constant
— attribute1 op attribute2

— attribute1 op constant

* Important! Conditions are evaluated a

single tuple at a time. Cannot state global

conditional on a table 2

Types of Comparisons

* We can use any of the comparisons:
<, 5 0>, 2, = #

—)

* When comparing an attribute with a string,
the string is written in single quotes

Jl‘namez 'cohen' (T)

Example

* Find id’s of students named jones who are in
their first year or third year of studies

ﬂ.sid (O-Sﬂame:'jones'/\(yearzlvyear:3) (S))

sid |sname |year sid

240 |white 202

jones

adams

Once Again

* What is in the result of the query when

we have this instance of S?

T sid (O-sname:' jones'A(year=1v year=3) (S))

sid year

240

A Variation

* What is in the result (and meaning) of
this query?

4 sid (O-SI’ZCIMQZ' jones'A(year=1nyear=3) (S))

B Can we express:
sid year Find the names for
which there are

240 some students with
that name in year 1
and in year 37?

What does this return?

ﬂsid (O-course;t'db' (R))
R

course

0S

calculus
db
db

Think about it

* When computing a selection on a relation
with n tuples,

— What is the minimum number of tuples in the
result?

— What is the maximum number of tuples in the
result?

* Must duplicates be eliminated when
processing a selection?

TIN'X

Union

32

Union

Binary operator

Written R U S

Union can only be performed between compatible
relations
— same number of attributes

— corresponding attributes have the same name and type
« names (but not types) can be changed to meet this requirement

Result contains all tuples that are in at least one of
the relations

Schema attributes of the result are those of R
(which are the same as those of S)

Think about it

« Suppose that R has n tuples, and S has m
tuples
— What is the minimum number of tuplesin Ru S ?

— What is the maximum number of tuplesin Ru S ?

* Must duplicates be eliminated when
processing a union?

Japbh

Set Difference

Set Difference

Binary operator

Can only be performed between relations
that are compatible

Written R - S
Result contains the tuples from R, notin S

Schema attributes of the result are those of
R (which are the same as those of 5)

Find ID’s of Students Who DO NOT
Study ‘db’

R

course

0S

calculus
db
db

Questions

» Suppose that R has n tuples, and S has m
tuples
— What is the minimum number of tuples in R-S ?

— What is the maximum number of tuples in R—-S ?

* Must duplicates be eliminated when
processing a set difference?

N'TLUZ N'79ON

Cartesian Product
(Cross Product)

Cartesian Product

Binary Operator

Written R x S

Result of a Cartesian product of two relations is a
new relation that contains a tuple for each pair of
tuples from the two input relation

Column names that appear in both R and S are
qualified with the relation name, e.g., R Aand S.A

Number of tuples in the result is always the product
of the number of tuplesin Rand in S

42

Recall: An Example of Relations

tid

sid

course

20

202

0S

10

450

calculus

20

202

db

20

240

db

S = Students
T = Teachers
R = Studies

s

sid

sname

year

240

white

202

jones

adams

thame

dept

cohen

math

levy

CS

RxT

course

0S

calculus
db
db

0S

calculus

db
db

9
. f«
When to Use Cartesian Product &@

* In order to get a meaningful result, we usually write
queries that have both a Cartesian product and a
selection.

— Example: Find the names of the courses taught by Levy

— More about this soon, when we discuss joins

 What happens when a Cartesian product is applied
and one of the relations is empty?

QY "'V

Renaming

Renaming

* Attribute conflicts may sometimes occurin a
relational-algebra expression (e.g., when
using Cartesian product)

— When else?

 Renaming can also give a name to (the
result of) a sub-expression, which can be
used to break down long expressions

Renaming Syntax

* The expression pga1.. an(E) takes the

relational-algebra expression E, and returns
a relation called R

* R contains the same tuples as E and the
same number of attributes, except that they
are renamed as A,,..., A,

* Every column of E must be a given a name
by p

Recall: An Example of Relations

tid

sid

course

20

202

0S

10

450

calculus

20

202

db

20

240

db

S = Students
T = Teachers
R = Studies

s

sid

sname

year

240

white

202

jones

adams

thame

dept

cohen

math

levy

CS

Both columns have the same name!
R X T Renaming is implicit (i.e., R.tid and T.tid)

Does implicit renaming always solve the problem?

course

0S

calculus
db
db

0S

calculus
db
db

pC(tid1 ,sid,course,tid2,tname,dpmnt)(RXT)

Renaming can be done explicitly by the operator p

tid1 |sid course tid2 |tname dpmnt

20 202 0S 10 cohen math

10 450 calculus 10 cohen math
20 202 db 10 cohen math
20 240 db 10 cohen math
20 202 0S 20 levy CS

10 450 calculus 20 levy CS
20 202 db 20 levy CS
20 240 db 20 levy CS

Otig1 =tid2(pC(tid1 ,sid,Course,tid2,tname,dpmnt)(RXT))

tid1

sid

course

tid2

thame

dpmnt

20

202

0OS

10

cohen

math

10

450

calculus

10

cohen

math

20

202

db

10

cohen

math

20

240

db

10

cohen

math

20

202

(015

20

levy

CS

10

450

calculus

20

levy

CS

20

202

db

20

levy

CS

20

240

db

20

levy

CS

The result consists of the purple tuples

Find the names of the courses
taught by Levy
sid |course g sid

20 202 |os
10 |450 |calculus
201202 |db
201240 |db

S = Students
T = Teachers
R = Studies

Additional Operators

Additional Operators

 We discussed the 5 basic operators of relational
algebra

» Additional operators can be defined in terms of
these

» Defining these operators is a good idea for two
reasons:

— Allows us to write simpler expressions

— Allows some specific optimizations

0Ny

Join

56

Joins

The result of a Cartesian product is usually not
meaningful

In order to derive an interesting result, selection is

usually composed onto the Cartesian product (as

in the previous example)
The join is a “shortcut” for writing such expressions

We will see three types of joins: conditional join,
equijoin and natural join

Conditional Join 'Xan oy 9in'y

A conditional join has the format
R S

where C is a condition as in select, except that all the

comparisons are between an attribute of R and an attribute
of S

This expression is equivalent to:
oC (R X S)
Conditional join is also called theta-join

Give examples that show legal and illegal C

PR1 (rtid,sid,course)(R) [X]rtid<tid T

course tid thame

0S 10 cohen

calculus 10 cohen
db 10 cohen
db 10 cohen

oS 20 levy

calculus 20 levy
db 20 levy
db 20 levy

Which rows are in the result?

Alternatively, we can write R Xg yiq<tig T

R.tid

sid

course

T.tid

thame

dept

20

202

0OS

10

cohen

math

10

450

calculus

10

cohen

math

20

202

db

10

cohen

math

20

240

db

10

cohen

math

20

202

0OS

20

levy

CS

10

450

calculus

20

levy

CS

20

202

db

20

levy

CS

20

240

db

20

levy

CS

Which rows are in the result?

Equijoin |I'nw ity

This is a special case of conditional join, where the
condition is a conjunction of equalities between attributes

For such cases, it is not necessary to have both equal
columns in the result and the second one is dropped
automatically

Thus, translating an Equijoin to an expression using only
the basic operators requires Cartesian product, selection
and projection

Give examples showing what is an equijoin and what is not

R Miig=tia2 PT1(tid2.thame depty(T)

sid course tid2 thame

202 0S 10 cohen

450 calculus 10 cohen
202 db 10 cohen
240 db 10 cohen
202 oS 20 levy

450 calculus 20 levy
202 db 20 levy
240 db 20 levy

What is in the result?

R Miig=tia2 PT1(tid2.thame depty(T)

course

calculus

db
db

What is in the result?

R Miig=tia2 PT1(tia2,tname,dept){ T)

sid

course

thame

450

calculus

cohen

202

0S

levy

202

db

levy

240

db

levy

Natural Join 'vav qin'y

* This is a special equijoin, where we require

equality between every pair of attributes that
have the same name in the two relations

* No condition is written

R S

Natural Join 'vau qiny

* Example: R X440 PT1(tid2,tname,dept)(T)

Is actually the sameas RIX T

 Question: Whatisin Rx Tif Rand T have
no common attributes?

* Question: Whatisin R T if Rand T have
exactly the same attributes?

Queries with Natural Join

Names of Teachers Who Teach
the Student with id 202

R |tid |sid |course S |sid |sname

201202 |os 240 |white

10 {450 |calculus 202 |jones
20 (202 (db adams
201240 |db

T |tid |tname
Tltname (Gsid=‘202’ (R X T)) cohen

levy

Tiname (Osig=-202' (R) > T)

What are the Years of Students Taught by Levy?
R|tid |sid |course S [sid |sname |year
20 1202 |os 240 |white
10 |450 |calculus 202 |jones
20 (202 |db 450 |adams

20 (240 |db T |tid | thame

Join is commutative 10 | cohen
and associative 20 |levy

7tyear (thame=‘levy’ (S X R T))

TCyear (S M R thame=‘levy’(T))

Example of Natural Join on
More than One Column

Equality Between Every Pair of
Columns with the Same Attribute

S| A C |R|A]| C

0S

db
db

What is the Result Now?

A B C R| A C

20 |os 0S
10 db
20 |[db
20 |db

RxS

217N

Division

Division

 Division is useful for writing “for all” queries

— But sometimes it is better not to use it for “for all’

 Examples:

— Find students who studied all of Prof. Cohen’s
courses

— Find lecturers who have taught all the students

« We will use + to denote division

— Sometimes, / is used for this operation

Division

« Can perform R + S if all the attributes
appearing in S also appear in R

 The result Is a relation with all the attributes
appearingin Rand notin S

e Rqye e X Yqri Yo), S(Yapen Y,):

— Which attributes are inthe resultof R =+ S ?

Division: Example

 Consider:
AKXy XYY)

* Then A<B =
{x1,...,xk> | (V<y1,...,ym>e B)
<x1,...,xk,y1,...,ym>e A}

76

Suppliers from A who supply All
Parts from B

pno
P
P2
P3
P4
P
P2
P2
P2

P4
A

Suppliers from A who supply All
Parts from B

pno
P
P2
P3
P4
P
P2
P2
P2

P4
A

Suppliers from A who supply All
Parts from B

pno
P
P2
P3
P4
P
P2
P2
P2

P4
A

Translating to Basic Operators

* To find the suppliers who supply all the parts
(A) =(B)

* Division can be expressed using other
relational algebra operators. How?

T nOA—nsn ((70 noAX B)—-A)

S 0] S

Teachers who taught all the
students

* To find the teachers who taught all the

students:

\IN'n

Intersection

Intersection

Binary operator

Written RN S

Performed between compatible relations

Result contains the tuples that appear In
both Rand S

SNG

What is in the

result?

Think about it

* How can we define n using the other
operators?

» Suppose that R has n tuples and S has m
tuples

— What is the minimum number of tuples inRn S ?

— What is the maximum number of tuplesinRn S ?

* |s duplicate elimination needed?

Practicing Relational Algebra

Suppliers(sid, snhame, address)

Parts(pid,pname,color)

The attributes of a
Catalog(sid,pid,cost) key are underlined

.Names of suppliers who supply some red parts

2.Sid’s of suppliers who supply a red part and a
green part

3.Sid’s of suppliers who do not supply a red part
4.Sid’s of suppliers who supply every red part

Equivalences Among
RA Expressions

What Does Equivalence Mean?

* We say that expressions E1 and E2 are equivalent
iIf for all instances (i.e., sets of tuples) of the
relations mentioned in E1 and E2, these
expressions always return the same result

Simple example: Consider the relation R(A,B,C).
The following three expressions are equivalent:

ma R TaTap R maTac R
Can E1 and E2 be equivalent if they mention
different relations?

Why and How?

E1=7n,R | |E2=7m mag R||E3 =np A c R

 Why do we care that the expressions are
equivalent?

— Mostly, for optimizations. Which expression is the most
efficient?
 How can we determine that the expressions are
equivalent?
— Prove containment in both directions
— Other, advanced, methods also exist

Examples and Notation
« Suppose that we have R(A,B) and S(A,B)

-Is 1ty RU, S equivalent to m, (

-Isty, RN n,S equivalent to m, (

* Equivalence is denoted by =
TCAR U TCAS = T[A(R US)

— We need to show that every tuple in

RUS)?

RNS)?

the result of

one side is also in the result of the other side

(two directions to prove)

Containment

« Sometimes there is only containment in one
direction, denoted by <
Ta(RNS)Ena, RN, S
— The proof is simple
» Toshown, Rnn,S & s (RNS), we need to
give a counterexample

A Counterexample

Boats1 Boats2

bname bid bname Color

Nancy 107 Kim blue
Matilda 104 Nancy Green
Gloria 101 Nancy blue

NNO'XEN S AXINN NMyNyNnN Nn

?I |
chname(BoatS 1) n nbname(Boatsz) e

?N20NN1 INNN 1TO NX 092NN 11X DX

Tpname(BOats1 n Boats2)

Equivalences for Optimizing
Select-Project-Join Expressions

How to Optimize?

 Make intermediate results as small as
possible using the following principles

— Apply selection and projection as soon as
possible (see example)

— Determine the best order of computing the joins
(the join is commutative and associative — see
next slide)

TCyear (S X (R X thame=‘levy’T))

Proof that the Natural Join is
Associative and Commutative

* Implied by the following characterization

* Atupletisintheresultof Ry MR, X XR,
if and only if
— The attributes of t are those of R,,...,R, and

— for all i, t{[R] is in the relation of R,

Notation: We use R, to denote both the
relation name and its set of attributes.

We denote the projection of a tuple t on
a set of attributes X as t[X].

The Characterization of Join

* Atupletof Ry X R, X X R, is over the

attributes of Uj_ R;
R1
l_l_\

—_r 0
R, AW

® Vl(T[Rl(t) € Rl‘) & te N?=1 Ri

t= |

* Note: g, (t) is also written as {[R]]

Explanation

* The characterization from the previous slide
does not depend on either the order of the
relations in the expression or the order of
applying the join operators (i.e., the way of
putting parentheses)

* Therefore, the join operator is commutative
and associative

Equivalence Rules for Projection
» X, Is the subset of X that appears in R

» X, is the subset of X that appears in S

* Y is the set of all attributes commonto R & S
(R X S) # 1y, (R) X 1y, (S)

Tx(R X S) # 1y, v(R) X 1ty v (S)

Ty (R X S) = (1, v (R) X 1ty v (S))

Notation: For sets of attributes X and Y, we
use XY to denote the union of X and Y

Which € ?

Ty (R X S) = mty (1, v (R) X 1ty,v(S))

X;=RnX,Y=RnS, X,=5nX

Explanation

* We must keep all the attributes of Y until
after the join is done

* \We must also keep all the attributes of X,
because they are needed for the final result

* Therefore, before the join we project R and
S on X,Y and X,Y, respectively, and after
the join we project on X

Equivalence Rules for Selection

ScqncolE) = 0c4(0c,(E)) = oc,(oc,(E))
If all attributes of C are in R,
6c(R%8) = 5c(R) XS | goniar rue
If all attributes of C are in S, for logical
(RN S) = R M on(S) L—2
If all attributes of C are in both R and S,
oc(RXS) = o¢(R) M o(S)

If possible, better to push selection into
the two operands rather than just one

Equivalence Rule for
Selection Followed by Projection

* Assuming that o7y (E) is well defined

(namely, the attributes of C are all in X), then

ocTix(E) = nyoc(E)

We can always push
selections through projections

Pushing Selections and Projections

* Repeatedly split each selection with A using the
equivalence o¢, ¢, (E) = o¢,(0¢,(E))
* Repeatedly do the following:

— Push selections through projections

— Push selections into every operand of a natural join if
possible (i.e., if the operand contains all the attributes
of the selection)

* Push projections inside joins (using Slide 98):
(R XS) = my(my,v(R) X 1,1 (S))

Example

* TaOB<«4Oc>5Ta g,c,0(R(AB,C) X S(C,D) X T(D,E))
* Push selections
TaTA B.c.D(0B<40c>5R(A,B,C) M 66.55(C,D) X T(D,E))

* Collapse consecutive projections into one
Ta(0g<10c-5R(A,B,C) M 6:.55(C,D) X T(D,E))

* Choose which join will be done first (based on size
estimation of intermediate results)

Ta((0g<40c-5R(A,B,C) M 60.55(C,D)) X T(D,E))

Example (continued)

« So far, we have
TA((08<40¢c>sR(A,B,C) M 6¢.55(C,D)) X T(D,E))
* Apply projections as early as possible

Ta(Ta p(Ta cOB<40c>5R(AB,C) M 6¢.55(C,D)) X
X o T(D,E))
— Can do it by applying the rule mentioned at the bottom of
Slide 103, but there is an alternative intuitive rule:

After each selection and join, project only
on the attributes that are needed later

Comment

* A sequence of selections and projections is
evaluated in one step

* Therefore, something like macg.4Gc-5mA g cpCaN be
written just as n,Gg.40cs5
— The whole sequence is evaluated efficiently in one scan
« Given a sequence of projections and selections, it

IS sufficient to write it as some selections followed
by a single projection

Another Comment

Determining join order and pushing selections &
projections should be done together, in general

» |f a selection is just a single comparison (not

necessarily =) between an attribute and a
constant, then

— It can be pushed to the base relations prior to
determining the join order

* In general, however, we need to know the

join order before pushing selections

— Same for projections

Converting Equijoins to Natural Joins

* An expression with selections, projections
and equijoins can always be converted into
an equivalent expression with selections,
projections and natural joins

— First, rename attributes so that no attribute
appears in more than one relation

— Next, if two attributes are equated by an
equijoin, then give them the same name

Independence of RA Operators

Independence

 The 5 basic operators:
— Projection (n70n)
— Selection (n1'N1)
— Cartesian product (n'rop n%9on)
— Union (TIN'x)
— Set difference (wv1on)

are independent

* This means that there are queries that cannot be
expressed if one of the operators is removed

Independence of
Cartesian Product and Projection

* \We can show independence of an operator if

we find a property P that it has whereas the

other four operators do not satisfy P

* What is a property of projection that the
other four operators do not have?

* What is a property of Cartesian product that
the other four operators do not have?

Proving Independence of Union

* There does not seem to be a global
property of union that the other operators
do not have

* To prove independence of union, we will
consider a property with respect to some
specific relations

Independence of Union

Consider the relation schemas R(A) and S(A) with
the following instances:

— R has only the tuple <0>
— S has only the tuple <1>

The result of R U S has two tuples

Every expression E over R and S that uses only
selection, projection, Cartesian product and
difference returns a relation with at most one tuple

Proof. Induction on the number of operators in E

Monotonic Queries

* A query is monoftonic if adding tuples to t
relations may only add tuples to the result

* Monotonicity is a semaniic property, namely,

it depends on the meaning of the query and
not on how we write it in relational algebra

— We can determine monotonicity just from the
description of the query in a natural language

Monotonic Queries (cont’d)

Which operators are monotonic and which are not?

— An operator is non-monotonic if adding tuples to some of
its operands can remove tuples from the result

What is the conclusion about independence?

Which queries among those discussed in the
exercise session are monotonic and which are not?

Which operators are essential for expressing non-

monotonic queries?

Independence of Selection

« Consider the relation R(A) with the tuples
<0> and <1>

» Consider the expression c,_4(R)

* Find some property P and prove that
— oa-o(R) does not have property P

— every expression over R and the operators r, U,
x and — returns a relation that satisfies P

