Relational Model and Relational Algebra

The Relational Model

- The relational model describes the logical view of the data by using tables
- The logical view does not describe how the data is stored
- There are different ways of storing relations on disks
- Efficiency is the major consideration when determining how to store relations on disks

The Relational Algebra

- Relational algebra (RA) is a (mathematical) query language for the relational model
- A query language is used for writing questions about the data
- Typically, a query language is high level, namely, it describes what we want but not how to compute it efficiently

SQL

- SQL is the concrete query language used in relational database management systems (RDBMS)
- Some of the differences between RA and SQL are subtle
- The result of a relational-algebra expression is always a set, whereas the result of an SQL query could have duplicates

Why do we need to understand RA?

- Real queries are written in SQL, but are translated by the query processor into relational algebra
- Why?
- SQL is declarative, RA provides (high level) operations for execution
- Optimization is easier in RA, since we can take advantage of (provable) expression equivalences

What you should know

1. How to calculate the result of a relationalalgebra expression over a set of relations
2. How to write queries in relational algebra
3. How to determine whether two relationalalgebra expressions are equivalent
4. How to push selection and projection
5. How to prove that the basic rel.-algebra operators are independent of one another

The Relational Data Model

The Relational Model

- Intuitively, a relation is a table
- Formally, a relation has two parts: schema and instance
- Schema: Name(att ${ }_{1}:$ dom $_{1}, \ldots$, att $_{k}:$ dom $_{k}$)
- Example: Students(sid: number, sname: string, year: int)
- In these slides, we usually omit the domain (i.e., type)
- Instance: A set of tuples (rows) with arity and types that match the schema
- Can be empty!
- No duplicates!

מונחים בעברית

- record, row, tuple
- יה, שורה, רשומה
- All of the above are different names for the same thing

Example Table

Some Notes

- The order of the rows is not important

sname	sid	year
smith	241	4
white	240	3

$=$| sname | sid | year |
| :--- | :--- | :--- |
| white | 240 | 3 |
| smith | 241 | 4 |

- The order of the columns is important when
- Some columns do not have a name, or
- Two or more columns have the same name
- No null values

Relational Algebra

Relational Algebra

- Relational algebra is a collection of operators on relations
- Operators may be unary or binary
- The output of an operator is a relation
- That is, the algebra is "closed"
- Therefore, operators can be composed one on another
- Note: the name of the output relation and some of its attribute names may be undefined

Basic Operators

- Relational Algebra has 5 basic operators:
- Projection (הטלה)
- Selection (בחירה)
- Union (איחוד)
- Set difference (הפרש)

- Cartesian product (מכפלה קרטזית)
- Other operators can be defined using these: intersection (חיתוך), join (צירוף), division (חילוק)
- A useful syntactic operator: renaming (שינוי שם)

An Example of Relations

R	tid	sid	course
20	202	os	
10	450	calculus	
20	202	db	
20	240	db	

T tid tname dept
S = Students
T = Teachers
R = Studies

S| sid | sname | year |
| :--- | :--- | ---: |
| 240 | white | 3 |
| 202 | jones | 3 |
| 450 | adams | 1 |

הטלה

Projection

Projection

- Projection is unary (i.e., it is applied to a single relation)
- Denoted by $\pi_{\mathrm{A}_{1}, \ldots, \mathbf{A}_{\mathrm{n}}}$
- A_{1}, \ldots, A_{n} are attributes
- Projection returns a new relation that contains only the columns $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}$ from the original relation
- The output relation does not have a name

Projection: Example

- The projection (in this case) returns the pairs of teacher id and course, such that the teacher teaches the course

R		
tid	sid	course
20	202	os
10	450	calculus
20	202	db
20	240	db

$\pi_{\text {tid,course }} \mathbf{R}$

tid	course
20	os
10	calculus
20	db

Conceptually, projection is applied to each tuple individually

Think about it

- You can mention the same column more than once in the projection, e.g., $\pi_{\text {sid, sid }} R$
- When computing a projection on a relation with n tuples,
- What is the minimum number of tuples in the result?
- What is the maximum number of tuples in the result?

בחירה

Selection

Selection

- Unary operator
- Written σ_{C}
-C is a Boolean condition over a single tuple
- Returns the tuples that satisfy C
- Just like projection, you can think of selection as operating on each tuple individually

Selection: Example

- Return the tuples for teacher number 20

R

tid	sid	course
20	202	os
10	450	calculus
20	202	db
20	240	db

Combining Selection and Projection

-What does this compute?

R		
tid	sid	course
20	202	os
10	450	calculus
20	202	db
20	240	db

Another Example

- How would you find the names of the third year students?

$$
\pi_{\text {sname }}\left(\sigma_{\text {year=3 }} R\right)
$$

S

sid	sname	year
240	white	3
202	jones	3
450	adams	1

What types of Conditions can be used?

- The condition is made up of comparisons that are connected using logical operators (and, or)
- Comparisons are between two attributes or between an attribute and a constant
- attribute1 op attribute2
- attribute1 op constant
- Important! Conditions are evaluated a single tuple at a time. Cannot state global conditional on a table

Types of Comparisons

- We can use any of the comparisons:

$$
<, \quad \leq,>, \geq, \quad=, \quad \neq
$$

- When comparing an attribute with a string, the string is written in single quotes

$$
\sigma_{\text {tname='cohen' }}(T)
$$

Example

- Find id's of students named jones who are in their first year or third year of studies
$\pi_{\text {sid }}\left(\sigma_{\text {sname }=\text { ' jones' } \wedge(\text { year }=1 \vee \text { year }=3)}(S)\right)$

S| sid | sname | year |
| :--- | :--- | ---: |
| 240 | white | 3 |
| 202 | jones | 3 |
| 450 | adams | 1 |

Once Again

- What is in the result of the query when we have this instance of S?
$\pi_{\text {sid }}\left(\sigma_{\text {sname=' jones' } \wedge(\text { year }=1 \vee \text { year }=3)}(S)\right)$

S| sid | sname | year |
| :--- | :--- | ---: |
| 240 | white | 3 |
| 202 | jones | 3 |
| 450 | jones | 1 |

A Variation

- What is in the result (and meaning) of this query?
$\pi_{\text {sid }}\left(\sigma_{\text {sname }=\text { ' jones' }} \wedge(\right.$ year $=1 \wedge$ year $\left.=3)(S)\right)$

S| sid | sname | year |
| :--- | :--- | ---: |
| 240 | white | 3 |
| 202 | jones | 3 |
| | | |

What does this return?

$$
\pi_{\text {sid }}\left(\sigma_{\text {course } \neq \not^{\prime} d b^{\prime}}(R)\right)
$$

R

tid	sid	course
20	202	os
10	450	calculus
20	202	db
20	240	db

Think about it

- When computing a selection on a relation with n tuples,
- What is the minimum number of tuples in the result?
- What is the maximum number of tuples in the result?
- Must duplicates be eliminated when processing a selection?

איחוד

Union

Union

- Binary operator
- Written R U S
- Union can only be performed between compatible relations
- same number of attributes
- corresponding attributes have the same name and type
- names (but not types) can be changed to meet this requirement
- Result contains all tuples that are in at least one of the relations
- Schema attributes of the result are those of R (which are the same as those of S)

Example

$S \bigcup G$		
sid	sname	year
240	white	3
202	jones	3
701	katz	1
820	sapir	2
450	adams	1

S| sid | sname | year |
| :--- | :--- | ---: |
| 240 | white | 3 |
| 202 | jones | 3 |
| 450 | adams | 1 |

sid	sname	year
701	katz	1
202	jones	3
820	sapir	2

Think about it

- Suppose that R has n tuples, and S has m tuples
- What is the minimum number of tuples in $R \cup S$?
- What is the maximum number of tuples in $R \cup S$?
- Must duplicates be eliminated when processing a union?

הפרש

Set Difference

Set Difference

- Binary operator
- Can only be performed between relations that are compatible
- Written R - S
- Result contains the tuples from R, not in S
- Schema attributes of the result are those of R (which are the same as those of S)

Example

$S-G$		S					
sid	sname	year					
240	white	3					
450	adams	1	$\}$	240	sid	sname	
:---	:---	:---					
202	jones	3					
450	adams	1	$	$	sid	sname	year
:---	:---	:---					
701	katz	1					
202	jones	3					
820	sapir	2					

Find ID's of Students Who DO NOT

 Study 'db'R

tid	sid	course
20	202	os
10	450	calculus
20	202	db
20	240	db

Questions

- Suppose that R has n tuples, and S has m tuples
- What is the minimum number of tuples in $R-S$?
- What is the maximum number of tuples in $\mathrm{R}-\mathrm{S}$?
- Must duplicates be eliminated when processing a set difference?

מכפלה קרטזית

Cartesian Product

(Cross Product)

Cartesian Product

- Binary Operator
- Written $\mathbf{R} \times \mathbf{S}$
- Result of a Cartesian product of two relations is a new relation that contains a tuple for each pair of tuples from the two input relation
- Column names that appear in both R and S are qualified with the relation name, e.g., R.A and S.A
- Number of tuples in the result is always the product of the number of tuples in R and in S

Recall: An Example of Relations

R	tid	sid	course
20	202	os	
10	450	calculus	
20	202	db	
20	240	db	

S = Students
T = Teachers
R = Studies

\mathbf{T}| tid | tname | dept |
| :--- | :--- | :--- |
| 10 | cohen | math |
| 20 | levy | cs |

R.tid

(tid)	sid	course	(tid)	tname	dept
20	202	os	10	cohen	math
10	450	calculus	10	cohen	math
20	202	db	10	cohen	math
20	240	db	10	cohen	math
20	202	os	20	levy	cs
10	450	calculus	20	levy	cs
20	202	db	20	levy	cs
20	240	db	20	levy	cs

When to Use Cartesian Product

- In order to get a meaningful result, we usually write queries that have both a Cartesian product and a selection.
- Example: Find the names of the courses taught by Levy
- More about this soon, when we discuss joins
- What happens when a Cartesian product is applied and one of the relations is empty?

שינו שם

Renaming

Renaming

- Attribute conflicts may sometimes occur in a relational-algebra expression (e.g., when using Cartesian product)
- When else?
- Renaming can also give a name to (the result of) a sub-expression, which can be used to break down long expressions

Renaming Syntax

- The expression $\rho_{\mathrm{R}(\mathrm{A} 1, \ldots, \mathrm{An})}(\mathrm{E})$ takes the relational-algebra expression E, and returns a relation called R
- R contains the same tuples as E and the same number of attributes, except that they are renamed as A_{1}, \ldots, A_{n}
- Every column of E must be a given a name by ρ

Recall: An Example of Relations

R	tid	sid	course
	20	202	os
10	450	calculus	
20	202	db	
20	240	db	

S = Students
T = Teachers
R = Studies

\mathbf{T}| tid | tname | dept |
| :--- | :--- | :--- |
| 10 | cohen | math |
| 20 | levy | cs |

$R \times T \quad \begin{gathered}\text { Both columns have the same name! } \\ \text { Renaming is implicit (i.e., R.tid and T.tid) }\end{gathered}$
Does implicit renaming always solve the problem?

(tid)	sid	course	(tid)	tname	dept
20	202	os	10	cohen	math
10	450	calculus	10	cohen	math
20	202	db	10	cohen	math
20	240	db	10	cohen	math
20	202	os	20	levy	cs
10	450	calculus	20	levy	cs
20	202	db	20	levy	cs
20	240	db	20	levy	cs

$$
\rho_{\mathrm{C}(\text { tid } 1, \text { sid, course,tid2,tname,dpmnt) }}(R \times T)
$$

Renaming can be done explicitly by the operator ρ

tid1	sid	course	tid2	tname	dpmnt
20	202	os	10	cohen	math
10	450	calculus	10	cohen	math
20	202	db	10	cohen	math
20	240	db	10	cohen	math
20	202	os	20	levy	cs
10	450	calculus	20	levy	cs
20	202	db	20	levy	cs
20	240	db	20	levy	cs

$\sigma_{\text {tid1 } 1 \text { tid2 }}\left(\rho_{\mathrm{C}(\mathrm{tid} 1, \text { sid, course,tid2,tname,dpmnt) }}(\mathrm{R} \times \mathrm{T})\right)$

tid1	sid	course	tid2	tname	dpmnt
20	202	os	10	cohen	math
$\mathbf{1 0}$	$\mathbf{4 5 0}$	calculus	$\mathbf{1 0}$	cohen	math
20	202	db	10	cohen	math
20	240	db	10	cohen	math
$\mathbf{2 0}$	$\mathbf{2 0 2}$	os	$\mathbf{2 0}$	levy	cs
10	450	calculus	20	levy	cs
$\mathbf{2 0}$	$\mathbf{2 0 2}$	db	$\mathbf{2 0}$	levy	cs
$\mathbf{2 0}$	$\mathbf{2 4 0}$	db	$\mathbf{2 0}$	levy	cs

The result consists of the purple tuples

Find the names of the courses taught by Levy

R	tid	sid	course
20	202	os	
10	450	calculus	
20	202	db	
20	240	db	

S = Students
T = Teachers
R = Studies

S| sid | sname | year |
| :--- | :--- | ---: |
| 240 | white | 3 |
| 202 | jones | 3 |
| 450 | adams | 1 |

T tid tname dept

10	cohen	math
20	levy	cs

Additional Operators

Additional Operators

- We discussed the 5 basic operators of relational algebra
- Additional operators can be defined in terms of these
- Defining these operators is a good idea for two reasons:
- Allows us to write simpler expressions
- Allows some specific optimizations

צירוף

Join

Joins

- The result of a Cartesian product is usually not meaningful
- In order to derive an interesting result, selection is usually composed onto the Cartesian product (as in the previous example)
- The join is a "shortcut" for writing such expressions
- We will see three types of joins: conditional join, equijoin and natural join

Conditional Join צירוף עם תנאי

- A conditional join has the format

$$
R \bowtie_{C} S
$$

where C is a condition as in select, except that all the comparisons are between an attribute of R and an attribute of S

- This expression is equivalent to:

$$
\sigma_{C}(R \times S)
$$

- Conditional join is also called theta-join
- Give examples that show legal and illegal C
$\rho_{R 1 \text { (rtid,sid,course) }}(R) \bowtie_{\text {rtid<tid }} T$

rtid	sid	course	tid	tname	dept
20	202	os	10	cohen	math
10	450	calculus	10	cohen	math
20	202	db	10	cohen	math
20	240	db	10	cohen	math
20	202	os	20	levy	cs
10	450	calculus	20	levy	cs
20	202	db	20	levy	cs
20	240	db	20	levy	cs

Which rows are in the result?

Alternatively, we can write $R \bowtie_{\text {R.tid }<T . \text { tid }} \top$

R.tid	sid	course	T.tid	tname	dept
20	202	os	10	cohen	math
10	450	calculus	10	cohen	math
20	202	db	10	cohen	math
20	240	db	10	cohen	math
20	202	os	20	levy	cs
10	450	calculus	20	levy	cs
20	202	db	20	levy	cs
20	240	db	20	levy	cs

Which rows are in the result?

Equijoin צירוף שוויון

- This is a special case of conditional join, where the condition is a conjunction of equalities between attributes
- For such cases, it is not necessary to have both equal columns in the result and the second one is dropped automatically
- Thus, translating an Equijoin to an expression using only the basic operators requires Cartesian product, selection and projection
- Give examples showing what is an equijoin and what is not
$\mathrm{R} \bowtie_{\text {tid=tid2 }} \rho_{\mathrm{T} 1 \text { (tid2,tname,dept) }}(\mathrm{T})$

tid	sid	course	tid2	tname	dept
20	202	os	10	cohen	math
10	450	calculus	10	cohen	math
20	202	db	10	cohen	math
20	240	db	10	cohen	math
20	202	os	20	levy	cs
10	450	calculus	20	levy	cs
20	202	db	20	levy	cs
20	240	db	20	levy	cs

$R \bowtie_{\text {tid=tid2 }} \rho_{\mathrm{T} 1 \text { (tid2,tname,dept) }}(\mathrm{T})$

tid	sid	course	tic	tname	dept
20	202	ع	11	cohen	math
10	450	calculus	10	cohen	math
20	202	U10	TY	cotien	mratit
2	240		$1 d$		math
20	202	os	20	levy	CS
1	150		2	-	
20	202	db	20	levy	CS
20	240	db	20	levy	cs
What is in the result?				${ }^{63}$	

$R \bowtie_{\text {tid=tid2 }} \rho_{\mathrm{T} 1 \text { (tid2,tname,dept) }}(\mathrm{T})$

tid	sid	course	tname	dept
10	450	calculus	cohen	math
20	202	os	levy	cs
20	202	db	levy	cs
20	240	db	levy	cs

צירוף טבעי Natural Join

- This is a special equijoin, where we require equality between every pair of attributes that have the same name in the two relations
- No condition is written

$$
R \bowtie S
$$

צירוף טבעי Natural Join

- Example: $\mathrm{R} \bowtie_{\text {tid=tid2 }} \rho_{\mathrm{T} 1 \text { (tid2,tname,dept) }}(\mathrm{T})$ is actually the same as $R \bowtie T$
- Question: What is in $R \bowtie T$ if R and T have no common attributes?
- Question: What is in $R \bowtie T$ if R and T have exactly the same attributes?

Queries with Natural Join

Names of Teachers Who Teach the Student with id 202

$\underline{\text { Lid }}$	$\underline{\text { sid }}$	course
20	202	os
10	450	calculus
20	202	db
20	240	db

S| sid | sname | year |
| :--- | :--- | ---: |
| 240 | white | 3 |
| 202 | jones | 3 |
| 450 | adams | 1 |

$\pi_{\text {name }}\left(\sigma_{\text {sid=‘202’ }}(R \bowtie T)\right)$
$\pi_{\text {name }}\left(\sigma_{\text {sid ='202’ }}(\mathrm{R}) \bowtie \mathrm{T}\right)$

fid	tame	dept
10	cohen	math
20	levy	cs

What are the Years of Students Taught by Levy?

R| fid | sid | course |
| :--- | :--- | :--- |
| 20 | 202 | os |
| 10 | 450 | calculus |
| 20 | 202 | db |
| 20 | 240 | db |

Join is commutative and associative
$\pi_{\text {year }}\left(\sigma_{\text {tname='levy' }}(S \bowtie R \bowtie T)\right)$
$\pi_{\text {year }}\left(S \bowtie R \bowtie \sigma_{\text {tname='levy' }}(T)\right)$

Example of Natural Join on More than One Column

Equality Between Every Pair of Columns with the Same Attribute

A	B	C
202	20	os
450	10	calc
202	20	db
240	20	db

A	C	D
240	calc	3
202	db	2
450	os	1

$R \bowtie S$

A	B	C	D
202	20	db	2

What is the Result Now?

A	B	C				
202	20	os				
450	10	calc				
202	20	db				
240	20	db	\quad	A	C	D
:---:	:---	:---				
240	os	3				
202	db	2				
450	calc	1				

$$
\mathrm{R} \bowtie \mathrm{~S} \quad \begin{array}{|c|c|c|c|}
\hline \text { A } & \text { B } & \text { C } & \text { D } \\
\hline 450 & 10 & \text { calc } & 1 \\
\hline 202 & 20 & \text { db } & 2 \\
\hline
\end{array}
$$

חילוק

Division

Division

- Division is useful for writing "for all" queries - But sometimes it is better not to use it for "for all"
- Examples:
- Find students who studied all of Prof. Cohen's courses
- Find lecturers who have taught all the students
- We will use \div to denote division
- Sometimes, I is used for this operation

Division

- Can perform $R \div S$ if all the attributes appearing in S also appear in R
- The result is a relation with all the attributes appearing in R and not in S
- $R\left(X_{1}, \ldots, X_{k}, Y_{1}, \ldots, Y_{m}\right), S\left(Y_{1}, \ldots, Y_{m}\right)$:
- Which attributes are in the result of $R \div S$?

Division: Example

- Consider:

$$
\begin{aligned}
& -A\left(X_{1}, \ldots, X_{k}, Y_{1}, \ldots, Y_{m}\right) \\
& -B\left(Y_{1}, \ldots, Y_{m}\right)
\end{aligned}
$$

- Then $\mathrm{A} \div \mathrm{B}=$
$\left\{\left\langle x_{1}, \ldots, x_{k}\right\rangle \mid\left(\forall\left\langle y_{1}, \ldots, y_{m}\right\rangle \in \mathrm{B}\right)\right.$
$\left.\left\langle x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{m}\right\rangle \in \mathrm{A}\right\}$

Suppliers from A who supply All Parts from B

no	pho
Si	P1
Si	P2
Si	P3
Si	P4
SQ	P1
SQ	P2
S3	P2
St	P2
St	P4

Suppliers from A who supply All Parts from B

sno	pho
Si	P1
Si	P2
Si	P3
S1	P4
SD	P1
S2	P2
S3	P2
SH	P2
St	P4

pho	
P2	
PA	
B	sno

Suppliers from A who supply All Parts from B

sno	no
Si	P1
Si	PR
Si	P3
S1	P4
S2	P1
SD	PR
S3	P2
SA	P2
S4	P4

\div	pho
P 1	
P 2	
P 4	$\mathrm{Z}=$
:---:	

Translating to Basic Operators

- To find the suppliers who supply all the parts

$$
(A) \div(B)
$$

- Division can be expressed using other relational algebra operators. How?

$$
\pi_{s n o} \mathrm{~A}-\pi_{\mathrm{sno}}\left(\left(\pi_{\mathrm{sno}} \mathrm{~A} \times \mathrm{B}\right)-\mathrm{A}\right)
$$

Teachers who taught all the students

- To find the teachers who taught all the students:

חיתוך

Intersection

Intersection

- Binary operator
- Written R $\cap \mathbf{S}$
- Performed between compatible relations
- Result contains the tuples that appear in both R and S

Example

$S \cap G$	S	sid	sname	year
		240	white	3
What is in the result?	G	202	jones	3
		450	adams	1
		sid	sname	year
		701	katz	1
		202	jones	3
		820	sapir	2

Think about it

- How can we define n using the other operators?
- Suppose that R has n tuples and S has m tuples
- What is the minimum number of tuples in $R \cap S$?
- What is the maximum number of tuples in $R \cap S$?
- Is duplicate elimination needed?

Practicing Relational Algebra

- Suppliers(sid, sname, address)
- Parts(pid,pname,color)
- Catalog(sid,pid,cost)

The attributes of a key are underlined

1. Names of suppliers who supply some red parts
2. Sid's of suppliers who supply a red part and a green part
3. Sid's of suppliers who do not supply a red part 4. Sid's of suppliers who supply every red part

Equivalences Among RA Expressions

What Does Equivalence Mean?

- We say that expressions E1 and E2 are equivalent if for all instances (i.e., sets of tuples) of the relations mentioned in E1 and E2, these expressions always return the same result
- Simple example: Consider the relation $R(A, B, C)$. The following three expressions are equivalent:

$$
\begin{array}{lll}
\pi_{\mathrm{A}} \mathrm{R} & \pi_{\mathrm{A}} \pi_{\mathrm{A}, \mathrm{~B}} \mathrm{R} & \pi_{\mathrm{A}} \pi_{\mathrm{A}, \mathrm{C}} \mathrm{R}
\end{array}
$$

- Can E1 and E2 be equivalent if they mention different relations?

Why and How?

$$
\mathrm{E} 1=\pi_{\mathrm{A}} \mathrm{R}| | \mathrm{E} 2=\pi_{\mathrm{A}} \pi_{\mathrm{A}, \mathrm{~B}} \mathrm{R}| | \mathrm{E} 3=\pi_{\mathrm{A}} \pi_{\mathrm{A}, \mathrm{C}} \mathrm{R}
$$

- Why do we care that the expressions are equivalent?
- Mostly, for optimizations. Which expression is the most efficient?
- How can we determine that the expressions are equivalent?
- Prove containment in both directions
- Other, advanced, methods also exist

Examples and Notation

- Suppose that we have $R(A, B)$ and $S(A, B)$
- Is $\pi_{A} R \cup \pi_{A} S$ equivalent to $\pi_{A}(R \cup S)$?
- Is $\pi_{A} R \cap \pi_{A} S$ equivalent to $\pi_{A}(\mathrm{R} \cap \mathrm{S})$?
- Equivalence is denoted by \equiv

$$
\pi_{A} R \cup \pi_{A} S \equiv \pi_{A}(R \cup S)
$$

- We need to show that every tuple in the result of one side is also in the result of the other side (two directions to prove)

Containment

- Sometimes there is only containment in one direction, denoted by \subseteq

$$
\pi_{A}(\mathrm{R} \cap \mathrm{~S}) \subseteq \pi_{\mathrm{A}} \mathrm{R} \cap \pi_{\mathrm{A}} \mathrm{~S}
$$

- The proof is simple
- To show $\pi_{A} R \cap \pi_{A} S \nsubseteq \pi_{A}(R \cap S)$, we need to give a counterexample

A Counterexample

Boats1		
$\underline{\text { bid }}$	bname	Color
101	Nancy	red
105	Matilda	Green
103	Gloria	red

Boats2		
$\underline{\text { bid }}$	bname	Color
107	Kim	blue
104	Nancy	Green
101	Nancy	blue

מה המשמעות והתוצאה של השאילתה
$\pi_{\text {bname }}\left(\right.$ Boats1) $\bigcap \pi_{\text {bname }}$ (Boats2)
ואם אנו מחליפים את סדר החיתוך וההטלה?
$\pi_{\text {bname }}($ Boats 1 〇Boats2)

Equivalences for Optimizing Select-Project-Join Expressions

How to Optimize?

- Make intermediate results as small as possible using the following principles
- Apply selection and projection as soon as possible (see example)
- Determine the best order of computing the joins (the join is commutative and associative - see next slide)

$$
\pi_{\text {year }}\left(S \bowtie\left(R \bowtie \sigma_{\text {tname='levy' }} T\right)\right)
$$

Proof that the Natural Join is Associative and Commutative

- Implied by the following characterization
- A tuple t is in the result of $R_{1} \bowtie R_{2} \bowtie \cdots \bowtie R_{n}$ if and only if
- The attributes of t are those of R_{1}, \ldots, R_{n}, and
- for all $i, t\left[R_{i}\right]$ is in the relation of R_{i}

Notation: We use R_{i} to denote both the relation name and its set of attributes. We denote the projection of a tuple t on a set of attributes X as $t[X]$.

The Characterization of Join

- A tuple t of $R_{1} \bowtie R_{2} \bowtie \cdots \bowtie R_{n}$ is over the attributes of $\bigcup_{i=1}^{n} R_{i}$

- $\forall i\left(\pi_{R_{i}}(t) \in R_{i}\right) \Leftrightarrow t \in \bowtie_{i=1}^{n} R_{i}$
- Note: $\pi_{R_{i}}(t)$ is also written as $\mathrm{t}\left[\mathrm{R}_{\mathrm{i}}\right]$

Explanation

- The characterization from the previous slide does not depend on either the order of the relations in the expression or the order of applying the join operators (i.e., the way of putting parentheses)
- Therefore, the join operator is commutative and associative

Equivalence Rules for Projection

- X_{1} is the subset of X that appears in R
- X_{2} is the subset of X that appears in S
- Y is the set of all attributes common to $R \& S$

Which \subseteq ?

$$
\pi_{\mathrm{X}}(\mathrm{R} \bowtie \mathrm{~S}) \not \equiv \pi_{\mathrm{X}_{1}}(\mathrm{R}) \bowtie \pi_{\mathrm{X}_{2}}(\mathrm{~S})
$$

$$
\begin{gathered}
\pi_{\mathrm{X}}(\mathrm{R} \bowtie \mathrm{~S}) \equiv \pi_{\mathrm{X}_{1} \mathrm{Y}}(\mathrm{R}) \bowtie \pi_{\mathrm{X}_{2} \mathrm{Y}}(\mathrm{~S}) \\
\pi_{\mathrm{X}}(\mathrm{R} \bowtie \mathrm{~S}) \equiv \pi_{\mathrm{X}}\left(\pi_{\mathrm{X}_{1} \mathrm{Y}}(\mathrm{R}) \bowtie \pi_{\mathrm{X}_{2} \mathrm{Y}}(\mathrm{~S})\right)
\end{gathered}
$$

Notation: For sets of attributes X and Y, we use $X Y$ to denote the union of X and Y
$\pi_{\mathrm{X}}(\mathrm{R} \bowtie \mathrm{S}) \equiv \pi_{\mathrm{X}}\left(\pi_{\mathrm{X}_{1} \mathrm{Y}}(\mathrm{R}) \bowtie \pi_{\mathrm{X}_{2} \mathrm{Y}}(\mathrm{S})\right)$
$X_{1}=R \cap X, Y=R \cap S, X_{2}=S \cap X$

Explanation

- We must keep all the attributes of Y until after the join is done
- We must also keep all the attributes of X, because they are needed for the final result
- Therefore, before the join we project R and S on $X_{1} Y$ and $X_{2} Y$, respectively, and after the join we project on X

Equivalence Rules for Selection

- $\sigma_{\mathrm{C}_{1} \wedge \mathrm{C}_{2}}(\mathrm{E}) \equiv \sigma_{\mathrm{C}_{1}}\left(\sigma_{\mathrm{C}_{2}}(\mathrm{E})\right) \equiv \sigma_{\mathrm{C}_{2}}\left(\sigma_{\mathrm{C}_{1}}(\mathrm{E})\right)$
- If all attributes of C are in R,

$$
\sigma_{C}(R \bowtie S) \equiv \sigma_{C}(R) \bowtie S
$$

- If all attributes of C are in S,

$$
\sigma_{C}(R \bowtie S) \equiv R \bowtie \sigma_{C}(S)
$$

Is there a similar rule for logical OR?

- If all attributes of C are in both R and S,

$$
\sigma_{C}(R \bowtie S) \equiv \sigma_{C}(R) \bowtie \sigma_{C}(S)
$$

If possible, better to push selection into the two operands rather than just one

Equivalence Rule for Selection Followed by Projection

- Assuming that $\sigma_{C} \pi_{\mathrm{x}}(\mathrm{E})$ is well defined (namely, the attributes of C are all in X), then

$$
\sigma_{C} \pi_{x}(\mathrm{E}) \equiv \pi_{\mathrm{x}} \sigma_{\mathrm{C}}(\mathrm{E})
$$

We can always push selections through projections

Pushing Selections and Projections

- Repeatedly split each selection with \wedge using the equivalence $\sigma_{\mathrm{C}_{1} \wedge \mathrm{C}_{2}}(\mathrm{E}) \equiv \sigma_{\mathrm{C}_{1}}\left(\sigma_{\mathrm{C}_{2}}(\mathrm{E})\right)$
- Repeatedly do the following:
- Push selections through projections
- Push selections into every operand of a natural join if possible (i.e., if the operand contains all the attributes of the selection)
- Push projections inside joins (using Slide 98):

$$
\pi_{X}(\mathrm{R} \bowtie \mathrm{~S}) \equiv \pi_{\mathrm{x}}\left(\pi_{\mathrm{X}_{1} Y}(\mathrm{R}) \bowtie \pi_{\mathrm{X}_{2} Y}(\mathrm{~S})\right)
$$

Example

- $\pi_{A} \sigma_{B<4} \sigma_{C>5} \pi_{A, B, C, D}(R(A, B, C) \bowtie S(C, D) \bowtie T(D, E))$
- Push selections

$$
\pi_{A} \pi_{A, B, C, D}\left(\sigma_{B<4} \sigma_{C>5} R(A, B, C) \bowtie \sigma_{C>5} S(C, D) \bowtie T(D, E)\right)
$$

- Collapse consecutive projections into one

$$
\pi_{\mathrm{A}}\left(\sigma_{\mathrm{B}<4} \sigma_{\mathrm{C}>5} \mathrm{R}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}) \bowtie \sigma_{\mathrm{C}>5} \mathrm{~S}(\mathrm{C}, \mathrm{D}) \bowtie \mathrm{T}(\mathrm{D}, \mathrm{E})\right)
$$

- Choose which join will be done first (based on size estimation of intermediate results)

$$
\pi_{\mathrm{A}}\left(\left(\sigma_{\mathrm{B}<4} \sigma_{\mathrm{C}>5} \mathrm{R}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}) \bowtie \sigma_{\mathrm{C}>5} \mathrm{~S}(\mathrm{C}, \mathrm{D})\right) \bowtie \mathrm{T}(\mathrm{D}, \mathrm{E})\right)
$$

Example (continued)

- So far, we have

$$
\pi_{\mathrm{A}}\left(\left(\sigma_{\mathrm{B}<4} \sigma_{\mathrm{C}>5} \mathrm{R}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}) \bowtie \sigma_{\mathrm{C}>5} \mathrm{~S}(\mathrm{C}, \mathrm{D})\right) \bowtie \mathrm{T}(\mathrm{D}, \mathrm{E})\right)
$$

- Apply projections as early as possible

$$
\begin{aligned}
\pi_{\mathrm{A}}\left(\pi _ { \mathrm { A } , \mathrm { D } } \left(\pi_{\mathrm{A}, \mathrm{C}} \sigma_{\mathrm{B}<4} \sigma_{\mathrm{C}>5} \mathrm{R}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})\right.\right. & \left.\bowtie \sigma_{\mathrm{C}>5} \mathrm{~S}(\mathrm{C}, \mathrm{D})\right) \\
& \bowtie \\
& \left.\pi_{\mathrm{D}} \mathrm{~T}(\mathrm{D}, \mathrm{E})\right)
\end{aligned}
$$

- Can do it by applying the rule mentioned at the bottom of Slide 103, but there is an alternative intuitive rule:

After each selection and join, project only on the attributes that are needed later

Comment

- A sequence of selections and projections is evaluated in one step
- Therefore, something like $\pi_{A} \sigma_{B<4} \sigma_{C>5} \pi_{A, B, C, D}$ can be written just as $\pi_{\mathrm{A}} \sigma_{\mathrm{B}<4} \sigma_{\mathrm{C}>5}$
- The whole sequence is evaluated efficiently in one scan
- Given a sequence of projections and selections, it is sufficient to write it as some selections followed by a single projection

Another Comment

Determining join order and pushing selections \& projections should be done together, in general

- If a selection is just a single comparison (not necessarily =) between an attribute and a constant, then
- It can be pushed to the base relations prior to determining the join order
- In general, however, we need to know the join order before pushing selections
- Same for projections

Converting Equijoins to Natural Joins

- An expression with selections, projections and equijoins can always be converted into an equivalent expression with selections, projections and natural joins
- First, rename attributes so that no attribute appears in more than one relation
- Next, if two attributes are equated by an equijoin, then give them the same name

Independence of RA Operators

Independence

- The 5 basic operators:
- Projection (הטלה)
- Selection (בחירה)
- Cartesian product (מכפלה קרטזית)
- Union (איחוד)
- Set difference (הפרש)
are independent
- This means that there are queries that cannot be expressed if one of the operators is removed

Independence of Cartesian Product and Projection

- We can show independence of an operator if we find a property P that it has whereas the other four operators do not satisfy P
- What is a property of projection that the other four operators do not have?
- What is a property of Cartesian product that the other four operators do not have?

Proving Independence of Union

- There does not seem to be a global property of union that the other operators do not have
- To prove independence of union, we will consider a property with respect to some specific relations

Independence of Union

- Consider the relation schemas $R(A)$ and $S(A)$ with the following instances:
- R has only the tuple <0>
- S has only the tuple <1>
- The result of $R \cup S$ has two tuples
- Every expression E over R and S that uses only selection, projection, Cartesian product and difference returns a relation with at most one tuple
- Proof: Induction on the number of operators in E

Monotonic Queries

- A query is monotonic if adding tuples to the relations may only add tuples to the result
- Monotonicity is a semantic property, namely, it depends on the meaning of the query and not on how we write it in relational algebra
- We can determine monotonicity just from the description of the query in a natural language

Monotonic Queries (cont'd)

- Which operators are monotonic and which are not?
- An operator is non-monotonic if adding tuples to some of its operands can remove tuples from the result
- What is the conclusion about independence?
- Which queries among those discussed in the exercise session are monotonic and which are not?
- Which operators are essential for expressing nonmonotonic queries?

Independence of Selection

- Consider the relation $R(A)$ with the tuples <0> and <1>
- Consider the expression $\sigma_{\mathrm{A}=0}(\mathrm{R})$
- Find some property P and prove that
- $\sigma_{A=0}(R)$ does not have property P
- every expression over R and the operators π, U , \times and - returns a relation that satisfies P

